Basic Network Encryption

Slides:



Advertisements
Similar presentations
Cryptography. 8: Network Security8-2 The language of cryptography symmetric key crypto: sender, receiver keys identical public-key crypto: encryption.
Advertisements

Public Key Cryptography & Message Authentication By Tahaei Fall 2012.
1 Counter-measures Threat Monitoring Cryptography as a security tool Encryption Digital Signature Key distribution.
1 Counter-measures Threat Monitoring Cryptography as a security tool Encryption Authentication Digital Signature Key distribution.
Chapter 8 Network Security Computer Networking: A Top Down Approach, 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, April 2009.
8-1 What is network security? Confidentiality: only sender, intended receiver should “understand” message contents m sender encrypts message m receiver.
Network Security understand principles of network security:
8: Network Security8-1 Chapter 8 Network Security A note on the use of these ppt slides: We’re making these slides freely available to all (faculty, students,
8: Network Security8-1 Symmetric key cryptography symmetric key crypto: Bob and Alice share know same (symmetric) key: K r e.g., key is knowing substitution.
Lecture 24 Cryptography CPE 401 / 601 Computer Network Systems slides are modified from Jim Kurose and Keith Ross and Dave Hollinger.
Chapter 31 Network Security
Behzad Akbari Spring In the Name of the Most High.
1-1 1DT066 Distributed Information System Chapter 8 Network Security.
8-1Network Security Chapter 8 roadmap 8.1 What is network security? 8.2 Principles of cryptography 8.3 Message integrity, authentication.
 This Class  Chapter 8. 2 What is network security?  Confidentiality  only sender, intended receiver should “understand” message contents.
Computer and Internet Security. Introduction Both individuals and companies are vulnerable to data theft and hacker attacks that can compromise data,
Chapter 8, slide: 1 ECE/CS 372 – introduction to computer networks Lecture 18 Announcements: r Final exam will take place August 13 th,2012 r HW4 and Lab5.
Introduction1-1 Data Communications and Computer Networks Chapter 6 CS 3830 Lecture 31 Omar Meqdadi Department of Computer Science and Software Engineering.
Day 37 8: Network Security8-1. 8: Network Security8-2 Symmetric key cryptography symmetric key crypto: Bob and Alice share know same (symmetric) key:
23-1 Last time □ P2P □ Security ♦ Intro ♦ Principles of cryptography.
ICT 6621 : Advanced NetworkingKhaled Mahbub, IICT, BUET, 2008 Lecture 11 Network Security (1)
Network Security7-1 CIS3360: Chapter 8: Cryptography Application of Public Cryptography Cliff Zou Spring 2012 TexPoint fonts used in EMF. Read the TexPoint.
Cryptography (2) University of Palestine Eng. Wisam Zaqoot April 2010 ITSS 4201 Internet Insurance and Information Hiding.
1 Security and Cryptography: basic aspects Ortal Arazi College of Engineering Dept. of Electrical & Computer Engineering The University of Tennessee.
Upper OSI Layers Natawut Nupairoj, Ph.D. Department of Computer Engineering Chulalongkorn University.
8-1 Chapter 8 Security Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 part 2: Message integrity.
1 Network Security Basics. 2 Network Security Foundations: r what is security? r cryptography r authentication r message integrity r key distribution.
Network Security7-1 CAP6135: Malware and Software Vulnerability Analysis Basic Knowledge on Computer Network Security Cliff Zou Spring 2011.
Cryptography 1 Crypto Cryptography 2 Crypto  Cryptology  The art and science of making and breaking “secret codes”  Cryptography  making “secret.
31.1 Chapter 31 Network Security Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
+ Security. + What is network security? confidentiality: only sender, intended receiver should “understand” message contents sender encrypts message receiver.
Computer and Network Security - Message Digests, Kerberos, PKI –
Network Security7-1 Chapter 8: Network Security Chapter goals: r Understand principles of network security: m cryptography and its many uses beyond “confidentiality”
1 Cryptography Troy Latchman Byungchil Kim. 2 Fundamentals We know that the medium we use to transmit data is insecure, e.g. can be sniffed. We know that.
 Last Class  Chapter 7 on Data Presentation Formatting and Compression  This Class  Chapter 8.1. and 8.2.
Lecture 22 Network Security (cont) CPE 401 / 601 Computer Network Systems slides are modified from Dave Hollinger slides are modified from Jim Kurose,
Cryptography services Lecturer: Dr. Peter Soreanu Students: Raed Awad Ahmad Abdalhalim
8-1 Chapter 8 Security Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A note on the use of these.
Network security Cryptographic Principles
Basics of Cryptography
Public-Key Cryptography and Message Authentication
Public Key Cryptography
Digital Signatures Cryptographic technique analogous to hand-written signatures. sender (Bob) digitally signs document, establishing he is document owner/creator.
What is network security?
Chapter 7 Network Security
CAP6135: Malware and Software Vulnerability Analysis Basic Knowledge on Computer Network Security Cliff Zou Spring 2013 Network Security 1.
ECE/CS 372 – introduction to computer networks Lecture 16
Network Security Primitives
CAP6135: Malware and Software Vulnerability Analysis Basic Knowledge on Computer Network Security Cliff Zou Spring 2014 Network Security 1.
CAP6135: Malware and Software Vulnerability Analysis Basic Knowledge on Computer Network Security Cliff Zou Spring 2010 Network Security 1.
CAP6135: Malware and Software Vulnerability Analysis Basic Knowledge on Computer Network Security Cliff Zou Spring 2015 Network Security 1.
Digital Signatures Cryptographic technique analogous to hand-written signatures. sender (Bob) digitally signs document, establishing he is document owner/creator.
CAP6135: Malware and Software Vulnerability Analysis Basic Knowledge on Computer Network Security Cliff Zou Spring 2009 Network Security 1.
Network Security Basics
Chapter 7: Network security
1DT057 Distributed Information System Chapter 8 Network Security
CAP6135: Malware and Software Vulnerability Analysis Basic Knowledge on Computer Network Security Cliff Zou Spring 2016 Network Security 1.
Intro to Cryptography Some slides have been taken from:
Protocol ap1.0: Alice says “I am Alice”
Encryption INST 346, Section 0201 April 3, 2018.
Digital Signatures Cryptographic technique analogous to hand-written signatures. sender (Bob) digitally signs document, establishing he is document owner/creator.
Cyber Operation and Penetration Testing Basic Cryptography and Applications Cliff Zou University of Central Florida 1.
Secure How do you do it? Need to worry about sniffing, modifying, end-user masquerading, replaying. If sender and receiver have shared secret keys,
Digital Signatures Cryptographic technique analogous to hand-written signatures. sender (Bob) digitally signs document, establishing he is document owner/creator.
Basic Network Encryption
Digital Signatures Cryptographic technique analogous to hand-written signatures. sender (Bob) digitally signs document, establishing he is document owner/creator.
Security: Integrity, Authentication, Non-repudiation
Digital Signatures Cryptographic technique analogous to hand-written signatures. sender (Bob) digitally signs document, establishing he is document owner/creator.
Chapter 8 roadmap 8.1 What is network security?
Presentation transcript:

Basic Network Encryption CIS 6395, Incident Response Technologies Fall 2016, Dr. Cliff Zou

Acknowledgement Part of the slides come from slides provided in well-known networking book: Computer Networking: A Top Down Approach Featuring the Internet, J. Kurose & K. Ross, Addison Wesley, 6th ed., 2013

The language of cryptography Alice Bob Alice’s encryption key Bob’s decryption key K A K B encryption algorithm plaintext ciphertext decryption algorithm plaintext Trudy symmetric key crypto: sender, receiver keys identical public-key crypto: encryption key public, decryption key secret (private) Network Security

Symmetric key cryptography AB K AB encryption algorithm plaintext message, m ciphertext decryption algorithm plaintext K (m) K (m) AB m = K ( ) AB symmetric key crypto: Bob and Alice share know same (symmetric) key: KAB e.g., key is knowing substitution pattern in mono alphabetic substitution cipher Q: how do Bob and Alice agree on key value? Network Security

Symmetric key crypto: DES DES: Data Encryption Standard US encryption standard [NIST 1993] 56-bit symmetric key, 64-bit plaintext input no known “backdoor” decryption approach Too short for current computing power Making DES more secure while still using legacy software or hardware (3DES): use three keys sequentially on each datum Key length increases three times Network Security

Symmetric key crypto: DES DES operation initial permutation 16 identical “rounds” of function application, each using different 48 bits of key final permutation Network Security

AES: Advanced Encryption Standard new (Nov. 2001) symmetric-key NIST standard, replacing DES processes data in 128 bit blocks 128, 192, or 256 bit keys There are many other similar and strong symmetric encryption algorithms: https://en.wikipedia.org/wiki/Symmetric-key_algorithm Blowfish, twofish, serpent…. Network Security

Public Key Cryptography symmetric key crypto requires sender, receiver know shared secret key Q: how to agree on key in first place (particularly if never “met”)? Q: how to hide this key from attacker when there is no secure channel? public key cryptography radically different approach [Diffie-Hellman76, RSA78] sender, receiver do not share secret key public encryption key known to all private decryption key known only to receiver Network Security

Public key cryptography + Bob’s public key K B - Bob’s private key K B plaintext message, m encryption algorithm ciphertext decryption algorithm plaintext message K (m) B + m = K (K (m)) B + - Network Security

Another important property The following property will be very useful later: K (K (m)) = m B - + K (K (m)) = use public key first, followed by private key use private key first, followed by public key Result is the same! Network Security

Bob’s message, m, signed (encrypted) with his private key Digital Signatures Simple digital signature for message m: Bob signs m by encrypting with his private key KB, creating “signed” message, KB(m) - - K B - Bob’s message, m Bob’s private key K B - (m) Dear Alice Oh, how I have missed you. I think of you all the time! …(blah blah blah) Bob Bob’s message, m, signed (encrypted) with his private key Public key encryption algorithm Network Security

Digital Signatures (more) - Suppose Alice receives msg m, digital signature KB(m) Alice verifies m signed by Bob by applying Bob’s public key KB to KB(m) then checks KB(KB(m) ) = m. If KB(KB(m) ) = m, whoever signed m must have used Bob’s private key. + - + - + - Alice thus verifies that: Bob signed m. No one else signed m. Bob signed m and not m’. Non-repudiation: Alice can take m, and signature KB(m) to court and prove that Bob signed m. - Network Security

Message Digests large message m H: Hash Function Computationally expensive to public-key-encrypt long messages Goal: fixed-length, easy- to- compute digital “fingerprint” apply hash function H to m, get fixed size message digest, H(m). H(m) Hash function properties: many-to-1 produces fixed-size msg digest (fingerprint) given message digest x, computationally infeasible to find m such that x = H(m) Network Security

Hash Function Algorithms MD5 hash function widely used (RFC 1321) computes 128-bit message digest in 4-step process. arbitrary 128-bit string x, appears difficult to construct msg m whose MD5 hash is equal to x. SHA-1 is also used. US standard [NIST, FIPS PUB 180-1] 160-bit message digest Network Security

Digital signature = signed message digest Alice verifies signature and integrity of digitally signed message: Bob sends digitally signed message: large message m H: Hash function KB(H(m)) - encrypted msg digest H(m) digital signature (encrypt) Bob’s private key large message m K B - Bob’s public key digital signature (decrypt) K B + KB(H(m)) - encrypted msg digest H: Hash function + H(m) H(m) equal ? No confidentiality ! Network Security

Trusted Intermediaries Public key problem: When Alice obtains Bob’s public key (from web site, e-mail, diskette), how does she know it is Bob’s public key, not Trudy’s? Solution: trusted certification authority (CA) Network Security

Certification Authorities Certification authority (CA): binds public key to particular entity, E. E (person, router) registers its public key with CA. E provides “proof of identity” to CA. CA creates certificate binding E to its public key. certificate containing E’s public key digitally signed by CA – CA says “this is E’s public key” - K CA (K ) B + digital signature (encrypt) K B + Bob’s public key K B + CA private key certificate for Bob’s public key, signed by CA - Bob’s identifying information K CA Network Security

Certification Authorities When Alice wants Bob’s public key: gets Bob’s certificate (Bob or elsewhere). apply CA’s public key to Bob’s certificate, get Bob’s public key K B + - K CA (K ) B + digital signature (decrypt) Bob’s public key K B + CA public key + K CA Network Security

Internet Web Security Architecture CA K+B use a side channel Web Server B K-CA(K+B) Client A Cert Request K-CA(K+B) K+B(KAB, R) KAB(R) KAB(m) Network Security

Internet Web Security Conditions Clients’ web browsers have built-in CAs. CAs are trustable Web servers have certificates in CAs. Q: What if a server has no certificate? Example: SSH servers Network Security

. . Secure Communication + Assumption: Public keys are pre-distributed securely E.g: through CA, or pre-established like SSH Alice wants to send confidential e-mail, m, to Bob. KS KS( ) . KS(m ) m + Internet KB( ) . + KS KB(KS ) + KB + Alice: generates random symmetric private key, KS. encrypts message with KS (for efficiency) also encrypts KS with Bob’s public key. sends both KS(m) and K+B(KS) to Bob. Network Security

. Secure Communication - Bob: Alice wants to send confidential e-mail, m, to Bob. KS( ) . KB( ) + - KS(m ) KB(KS ) m KS KB Internet Bob: uses his private key to decrypt and recover KS uses KS to decrypt KS(m) to recover m Network Security

. Secure Communication + Alice wants to provide sender authentication message integrity. H( ) . KA( ) - + H(m ) KA(H(m)) m KA Internet compare Alice digitally signs message. sends both message (in the clear) and digital signature. Network Security

. Secure Communication + Alice wants to provide secrecy, sender authentication, message integrity. H( ) . KA( ) - + KA(H(m)) m KA KS( ) KB( ) KB(KS ) KS KB Internet Alice uses three keys: her private key, Bob’s public key, newly created symmetric key Network Security