Statistical Inference

Slides:



Advertisements
Similar presentations
SPM short course – Mai 2007 Linear Models and Contrasts
Advertisements

Statistical Inference
SPM Course Zurich, February 2012 Statistical Inference Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London.
Group Analyses Guillaume Flandin SPM Course Zurich, February 2014
Group analysis Kherif Ferath Wellcome Trust Centre for Neuroimaging University College London SPM Course London, Oct 2010.
1 st Level Analysis: design matrix, contrasts, GLM Clare Palmer & Misun Kim Methods for Dummies
SPM 2002 C1C2C3 X =  C1 C2 Xb L C1 L C2  C1 C2 Xb L C1  L C2 Y Xb e Space of X C1 C2 Xb Space X C1 C2 C1  C3 P C1C2  Xb Xb Space of X C1 C2 C1 
Outline What is ‘1st level analysis’? The Design matrix
The General Linear Model Or, What the Hell’s Going on During Estimation?
Classical inference and design efficiency Zurich SPM Course 2014
Statistical Inference Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London SPM Course Zurich, February 2009.
Classical (frequentist) inference Methods & models for fMRI data analysis in neuroeconomics April 2010 Klaas Enno Stephan Laboratory for Social and Neural.
The General Linear Model (GLM)
Statistical Inference
Classical (frequentist) inference Methods & models for fMRI data analysis in neuroeconomics 14 October 2009 Klaas Enno Stephan Laboratory for Social and.
Classical (frequentist) inference Methods & models for fMRI data analysis 11 March 2009 Klaas Enno Stephan Laboratory for Social and Neural System Research.
Classical (frequentist) inference Methods & models for fMRI data analysis 22 October 2008 Klaas Enno Stephan Branco Weiss Laboratory (BWL) Institute for.
Multiple comparison correction Methods & models for fMRI data analysis 29 October 2008 Klaas Enno Stephan Branco Weiss Laboratory (BWL) Institute for Empirical.
1st level analysis: basis functions and correlated regressors
SPM short course – May 2003 Linear Models and Contrasts The random field theory Hammering a Linear Model Use for Normalisation T and F tests : (orthogonal.
General Linear Model & Classical Inference
General Linear Model & Classical Inference Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London SPM M/EEGCourse London, May.
With many thanks for slides & images to: FIL Methods group, Virginia Flanagin and Klaas Enno Stephan Dr. Frederike Petzschner Translational Neuromodeling.
General Linear Model & Classical Inference London, SPM-M/EEG course May 2014 C. Phillips, Cyclotron Research Centre, ULg, Belgium
SPM Course Zurich, February 2015 Group Analyses Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London With many thanks to.
Classical (frequentist) inference Methods & models for fMRI data analysis November 2012 With many thanks for slides & images to: FIL Methods group Klaas.
SPM short course – Oct Linear Models and Contrasts Jean-Baptiste Poline Neurospin, I2BM, CEA Saclay, France.
FMRI GLM Analysis 7/15/2014Tuesday Yingying Wang
Contrasts & Statistical Inference
Spatial Smoothing and Multiple Comparisons Correction for Dummies Alexa Morcom, Matthew Brett Acknowledgements.
Methods for Dummies Second level Analysis (for fMRI) Chris Hardy, Alex Fellows Expert: Guillaume Flandin.
Statistical Inference Christophe Phillips SPM Course London, May 2012.
FMRI Modelling & Statistical Inference Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London SPM Course Chicago, Oct.
The General Linear Model Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London SPM fMRI Course London, May 2012.
SPM short – Mai 2008 Linear Models and Contrasts Stefan Kiebel Wellcome Trust Centre for Neuroimaging.
The general linear model and Statistical Parametric Mapping I: Introduction to the GLM Alexa Morcom and Stefan Kiebel, Rik Henson, Andrew Holmes & J-B.
Contrasts & Statistical Inference Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London SPM Course London, October 2008.
The General Linear Model Christophe Phillips SPM Short Course London, May 2013.
The General Linear Model Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London SPM fMRI Course London, October 2012.
SPM short course – Mai 2008 Linear Models and Contrasts Jean-Baptiste Poline Neurospin, I2BM, CEA Saclay, France.
General Linear Model & Classical Inference London, SPM-M/EEG course May 2016 Sven Bestmann, Sobell Department, Institute of Neurology, UCL
General Linear Model & Classical Inference Short course on SPM for MEG/EEG Wellcome Trust Centre for Neuroimaging University College London May 2010 C.
The General Linear Model (GLM)
Group Analyses Guillaume Flandin SPM Course London, October 2016
General Linear Model & Classical Inference
The general linear model and Statistical Parametric Mapping
The General Linear Model
2nd Level Analysis Methods for Dummies 2010/11 - 2nd Feb 2011
Design Matrix, General Linear Modelling, Contrasts and Inference
Statistical Inference
SPM short course at Yale – April 2005 Linear Models and Contrasts
and Stefan Kiebel, Rik Henson, Andrew Holmes & J-B Poline
Statistical Inference
The General Linear Model (GLM)
Methods for Dummies Second-level Analysis (for fMRI)
Contrasts & Statistical Inference
The General Linear Model
Statistical Parametric Mapping
The general linear model and Statistical Parametric Mapping
The General Linear Model
The General Linear Model (GLM)
Statistical Inference
SPM short course – May 2009 Linear Models and Contrasts
Contrasts & Statistical Inference
MfD 04/12/18 Alice Accorroni – Elena Amoruso
The General Linear Model
Statistical Inference
The General Linear Model
The General Linear Model
Contrasts & Statistical Inference
Presentation transcript:

Statistical Inference Christophe Phillips (& Guillaume Flandin) SPM Course London, October 2013

Statistical Inference Image time-series Spatial filter Design matrix Statistical Parametric Map Realignment Smoothing General Linear Model Statistical Inference RFT Normalisation p <0.05 Anatomical reference Parameter estimates

Overview Model specification and parameters estimation Hypothesis testing Contrasts T-tests F-tests Correlation between regressors Contrast estimability & design efficiency

A mass-univariate approach Time

Estimation of the parameters i.i.d. assumptions:     OLS estimates:                  

Hypothesis Testing To test an hypothesis, we construct “test statistics”. The Null Hypothesis H0 Typically what we want to disprove (no effect).  The Alternative Hypothesis HA expresses outcome of interest. The Test Statistic T The test statistic summarises evidence about H0. Typically, test statistic is small in magnitude when the hypothesis H0 is true and large when false.  We need to know the distribution of T under the null hypothesis. Null Distribution of T

Hypothesis Testing u t Significance level α: Acceptable false positive rate α.  threshold uα Threshold uα controls the false positive rate  Observation of test statistic t, a realisation of T Null Distribution of T The conclusion about the hypothesis: We reject the null hypothesis in favour of the alternative hypothesis if t > uα t P-value: A p-value summarises evidence against H0. This is the chance of observing value more extreme than t under the null hypothesis. P-val Null Distribution of T

Contrasts   [0 1 -1 0 0 0 0 0 0 0 0 0 0 0] [1 0 0 0 0 0 0 0 0 0 0 0 0 0]     We are usually not interested in the whole β vector.  

T-test - one dimensional contrasts – SPM{t} cT = 1 0 0 0 0 0 0 0 Question: box-car amplitude > 0 ? = b1 = cTb> 0 ? b1 b2 b3 b4 b5 ... Null hypothesis: H0: cTb=0 T = contrast of estimated parameters variance estimate Test statistic:

T-contrast in SPM For a given contrast c: ResMS image beta_???? images con_???? image spmT_???? image SPM{t}

T-test: a simple example Passive word listening versus rest cT = [ 1 0 0 0 0 0 0 0] Q: activation during listening ? 1 Null hypothesis: SPMresults: Height threshold T = 3.2057 {p<0.001} voxel-level p uncorrected T ( Z º ) mm mm mm 13.94 Inf 0.000 -63 -27 15 12.04 -48 -33 12 11.82 -66 -21 6 13.72 57 -21 12 12.29 63 -12 -3 9.89 7.83 57 -39 6 7.39 6.36 36 -30 -15 6.84 5.99 51 0 48 5.65 -63 -54 -3 6.19 5.53 -30 -33 -18 5.96 5.36 36 -27 9 5.84 5.27 -45 42 9 5.44 4.97 48 27 24 5.32 4.87 36 -27 42

T-test: summary T-test is a signal-to-noise measure (ratio of estimate to standard deviation of estimate). T-contrasts are simple combinations of the betas; the T-statistic does not depend on the scaling of the regressors or the scaling of the contrast. H0: vs HA: Unilateral test:

Scaling issue [1 1 1 1 ] / 4 Subject 1 The T-statistic does not depend on the scaling of the regressors. The T-statistic does not depend on the scaling of the contrast. Contrast depends on scaling. [1 1 1 ] / 3 Be careful of the interpretation of the contrasts themselves (eg, for a second level analysis): sum ≠ average Subject 5

F-test - the extra-sum-of-squares principle Model comparison: Null Hypothesis H0: True model is X0 (reduced model) X1 X0 X0 Test statistic: ratio of explained variability and unexplained variability (error)   RSS RSS0   1 = rank(X) – rank(X0) 2 = N – rank(X) Full model ? or Reduced model?

F-test - multidimensional contrasts – SPM{F} Tests multiple linear hypotheses: H0: True model is X0 H0: b4 = b5 = ... = b9 = 0 test H0 : cTb = 0 ? SPM{F6,322} X0 X1 (b4-9) X0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 cT = Full model? Reduced model?

F-contrast in SPM ( RSS0 - RSS ) ResMS image beta_???? images ess_???? images spmF_???? images ( RSS0 - RSS ) SPM{F}

F-test example: movement related effects Design matrix 2 4 6 8 10 20 30 40 50 60 70 80 contrast(s) Design matrix 2 4 6 8 10 20 30 40 50 60 70 80 contrast(s)

F-test: summary F-tests can be viewed as testing for the additional variance explained by a larger model wrt a simpler (nested) model  Model comparison. F tests a weighted sum of squares of one or several combinations of the regression coefficients b. In practice, we don’t have to explicitly separate X into [X1X2] thanks to multidimensional contrasts. Hypotheses: In testing uni-dimensional contrast with an F-test, for example b1 – b2, the result will be the same as testing b2 – b1. It will be exactly the square of the t-test, testing for both positive and negative effects.

Shared variance Orthogonal regressors.

Shared variance Testing for the green: Correlated regressors, for example: green: subject age yellow: subject score

Shared variance Testing for the red: Correlated regressors.

Shared variance Testing for the green: Highly correlated green & yellow regressors. NOTE: Entirely correlated non estimable

Shared variance Testing for the green and yellow If significant, can be G and/or Y

Design orthogonality For each pair of columns of the design matrix, the orthogonality matrix depicts the magnitude of the cosine of the angle between them, with the range 0 to 1 mapped from white to black. If both vectors have zero mean then the cosine of the angle between the vectors is the same as the correlation between the two variates.

Correlated regressors: summary We implicitly test for an additional effect only. When testing for the first regressor, we are effectively removing the part of the signal that can be accounted for by the second regressor:  implicit orthogonalisation. Orthogonalisation = decorrelation. Parameters and test on the non modified regressor change. Rarely solves the problem as it requires assumptions about which regressor to uniquely attribute the common variance.  change regressors (i.e. design) instead, e.g. factorial designs.  use F-tests to assess overall significance. Original regressors may not matter: it’s the contrast you are testing which should be as decorrelated as possible from the rest of the design matrix x2 x2 x2 x^ 2 x^ = x2 – x1.x2 x1 x1 2 x1 x1 x^ 1

Estimability of a contrast If X is not of full rank then we can have Xb(1) = Xb(2) with b(1)≠ b(2) (different parameters). The parameters are not therefore ‘unique’, ‘identifiable’ or ‘estimable’. For such models, XTX is not invertible so we must resort to generalised inverses (SPM uses the pseudo-inverse). One-way ANOVA (unpaired two-sample t-test) 1 0 1 0 1 1 Rank(X)=2 Example: [1 0 0], [0 1 0], [0 0 1] are not estimable. [1 0 1], [0 1 1], [1 -1 0], [0.5 0.5 1] are estimable.

Design efficiency The aim is to minimize the standard error of a t-contrast (i.e. the denominator of a t-statistic). This is equivalent to maximizing the efficiency e: Noise variance Design variance If we assume that the noise variance is independent of the specific design: This is a relative measure: all we can really say is that one design is more efficient than another (for a given contrast).

Design efficiency A B A+B A-B     A+B A-B High correlation between regressors leads to low sensitivity to each regressor alone. We can still estimate efficiently the difference between them.

Levels of inference & power

Bibliography: Statistical Parametric Mapping: The Analysis of Functional Brain Images. Elsevier, 2007. Plane Answers to Complex Questions: The Theory of Linear Models. R. Christensen, Springer, 1996. Statistical parametric maps in functional imaging: a general linear approach. K.J. Friston et al, Human Brain Mapping, 1995. Ambiguous results in functional neuroimaging data analysis due to covariate correlation. A. Andrade et al., NeuroImage, 1999. With many thanks to J.-B. Poline, G. Flandin, T. Nichols, S. Kiebel, R. Henson for their contribution to the slides.