Final Focus Synchrotron Radiation

Slides:



Advertisements
Similar presentations
Joanne Beebe-Wang 7/27/11 1 SR in eRHIC IR Synchrotron Radiation in eRHIC IR and Detector Background Joanne Beebe-Wang Brookhaven National Laboratory 10/
Advertisements

M. Sullivan Mini-workshop on the MEIC design Nov 2, 2012.
Super-B Factory Workshop April 20-23, 2005 Super-B IR design M. Sullivan 1 Status on an IR Design for a Super-B Factory M. Sullivan for the Super-B Factory.
Super-B Factory Workshop January 19-22, 2004 Beam pipes M. Sullivan 1 Detector Beam Pipe Diameter Discussion M. Sullivan Super-B Factory Workshop Hawaii.
Super-B Factory Workshop January 19-22, 2004 IR Upgrade M. Sullivan 1 PEP-II Interaction Region Upgrade M. Sullivan for the Super-B Factory Workshop Hawaii.
Super-B Factory Workshop January 19-22, 2004 Accelerator Backgrounds M. Sullivan 1 Accelerator Generated Backgrounds for e  e  B-Factories M. Sullivan.
Super-B Factory Workshop January 19-22, 2004 Super-B IR design M. Sullivan 1 Interaction Region Design for a Super-B Factory M. Sullivan for the Super-B.
Synchrotron Radiation (SR) in Super-KEKB / Belle Osamu Tajima ( Tohoku univ )
1/18 The Distribution of Synchrotron Radiation Power in the IR C. H. Yu IR Overview SR Distribution in the IR The Protection of SR Power.
Synchrotron radiation at eRHIC Yichao Jing, Oleg Chubar, Vladimir N. Litvinenko.
Page 1 Overview and Issues of the MEIC Interaction Region M. Sullivan MEIC Accelerator Design Review September 15-16, 2010.
LCWS2004 Paris 1 Beam background study for GLC Tsukasa Aso, Toyama College of Maritime Technology and GLC Vertex Group H.Aihara, K.Tanabe, Tokyo Univ.
ATF2 background and beam halo study D. Wang(IHEP), S. Bai(IHEP), P. bambade(LAL) February 7, 2013.
ILC MDI workshop January 6-8, 2004 PEP-II IR M. Sullivan 1 Interaction Region of PEP-II M. Sullivan for the ILC MDI workshop January 6-8, 2005.
Interaction Region Backgrounds M. Sullivan for the MEIC Collaboration Meeting Oct. 5-7, 2015.
Interaction Region Issues M. Sullivan for the EIC User Group Meeting Jan. 6-9, 2016.
ILC EXTRACTION LINE TRACKING Y. Nosochkov, E. Marin September 10, 2013.
1 M. Sullivan IR update IR Update M. Sullivan for the 3 rd SuperB workshop SLAC June14-16, 2006.
ILC IP SR and PEP-II M. Sullivan for the ILC IR engineering workshop IRENG07 Sept 17-21, 2007.
Interaction Region Design and Detector Integration V.S. Morozov for EIC Study Group at JLAB 2 nd Mini-Workshop on MEIC Interaction Region Design JLab,
Detector / Interaction Region Integration Vasiliy Morozov, Charles Hyde, Pawel Nadel-Turonski Joint CASA/Accelerator and Nuclear Physics MEIC/ELIC Meeting.
Joint Belle SuperB Background Meeting Feb 9 – 10, 2012 SuperB SR bkgds 1 SR Backgrounds in SuperB M. Sullivan For M. Boscolo, K. Bertsche, E. Paoloni,
1 O. Napoly ECFA-DESY Amsterdam, April 2003 Machine – Detector Interface : what is new since the TDR ? O. Napoly CEA/Saclay.
Initial Study of Synchrotron Radiation Issues for the CEPC Interaction Region M. Sullivan SLAC National Accelerator Laboratory for the CEPC14 Workshop.
MAIN DUMP LINE: BEAM LOSS SIMULATIONS WITH THE TDR PARAMETERS Y. Nosochkov E. Marin, G. White (SLAC) LCWS14 Workshop, Belgrade, October 7, 2014.
Design challenges for head-on scheme Deepa Angal-Kalinin Orsay, 19 th October 2006.
Further SR Studies for the Electron Polarimeter M. Sullivan for the JLEIC Collaboration Meeting Oct. 5-7, 2016.
1 April 1 st, 2003 O. Napoly, ECFA-DESY Amsterdam Design of a new Final Focus System with l* = 4,5 m J. Payet, O. Napoly CEA/Saclay.
FCC-ee Interaction Region design
JLEIC MDI Update Michael Sullivan Apr 4, 2017.
M. Sullivan Apr 27, 2017 MDI meeting
Interaction Region and Detector
MDI and head-on collision option for electron-positron Higgs factories
Update of the SR studies for the FCCee Interaction Region
M. Sullivan for the SLAC SuperB Workshop Jan , 2009
M. Sullivan International Review Committee November 12-13, 2007
Electron Cooling Simulation For JLEIC
LHeC interaction region
The Interaction Region
JLEIC Forward Ion Detection Region
M. Boscolo, K. Bertsche, E. Paoloni, S. Bettoni,
Non-linear Beam Dynamics Studies for JLEIC Electron Collider Ring
E. Paloni, S. Bettoni, R. Pantaleo, M Biagini, et al.
First Look at Nonlinear Dynamics in the Electron Collider Ring
The PEP-II Interaction e+e- Factories Workshop
Error and Multipole Sensitivity Study for the Ion Collider Ring
Ion-Side Small Angle Detection Forward, Far-Forward, & Ultra-Forward
Interaction Region Design Options e+e- Factories Workshop
Higgs Factory Backgrounds
Update on JLEIC Interaction Region Design
EIC Accelerator Collaboration Meeting
IR Summary M. Sullivan For
M. Boscolo, K. Bertsche, E. Paoloni, S. Bettoni,
Yuri Nosochkov Yunhai Cai, Fanglei Lin, Vasiliy Morozov
Electron Ring IP Region Optics
Progress on Non-linear Beam Dynamic Study
Summary of the FCCee IR Workshop Jan 2017 at CERN
Update on MEIC Nonlinear Dynamics Work
IR Magnet Design and Engineering Considerations
JLEIC High-Energy Ion IR Design: Options and Performance
SR Update for JLEIC June 8, 2017
HE-JLEIC: Boosting Luminosity at High Energy
Fanglei Lin, Yuhong Zhang JLEIC R&D Meeting, March 10, 2016
Some of the Points Raised During my JLAB Visit
Progress Update on the Electron Polarization Study in the JLEIC
IR/MDI requirements for the EIC
SR Background Update for JLEIC
JLEIC Electron Ring Nonlinear Dynamics Work Plan
Upgrade on Compensation of Detector Solenoid effects
Fanglei Lin JLEIC R&D Meeting, August 4, 2016
Presentation transcript:

Final Focus Synchrotron Radiation M. Sullivan for the JLEIC Collaboration Meeting Mar. 29-31, 2016

JLEIC Collaboration Meeting Mar. 2016 Outline Brief Introduction Beam parameters SR from the final focus elements Synchrotron Radiation backgrounds Results from 3 accelerator options Total photons and power from FF SR Smaller IP beam pipe? Summary Conclusion JLEIC Collaboration Meeting Mar. 2016

JLEIC Collaboration Meeting Mar. 2016 Accelerator The EIC accelerator design(s) have large beam energy range(s) for both beams 5-20 GeV for e- 20-250 GeV for the ions This flexibility must be carefully observed when designing IR details SR for the electron beam is a good example JLEIC Collaboration Meeting Mar. 2016

Electron IR Parameters JLEIC current baseline design parameters Electron beam Energy range 3-10 GeV Current (5/10 GeV) 3/0.7 A Beam-stay-clear 12 beam sigmas Emittance (x/y) (5 GeV) (14/2.8) nm-rad Emittance (x/y) (10 GeV) (56/11) nm-rad Betas x* = 10 cm x max = 300 m y* = 2 cm y max = 325 m Final focus magnets Name Z of face L (m) k G (10 GeV-T/m) QFF1 2.4 0.7 -1.3163 -43.906 QFF2 3.2 0.7 1.3644 45.511 QFFL 4.4 0.5 -0.4905 -16.362 JLEIC Collaboration Meeting Mar. 2016

JLEIC Collaboration Meeting Mar. 2016 Ion IR Parameters Proton/ion beam Energy range 20-100 GeV Beam-stay-clear 12 beam sigmas Emittance (x/y) (60 GeV) (5.5/1.1) nm-rad Betas x* = 10 cm x max = 2195 m y* = 2 cm y max = 2580 m Final focus magnets Name Z of face L (m) k G (60 GeV) QFF1 7.0 1.0 -0.3576 -71.570 QFF2 9.0 1.0 0.3192 63.884 QFFL 11.0 1.0 -0.2000 -40.02 JLEIC Collaboration Meeting Mar. 2016

Final Focus SR backgrounds We need to check background rates for various machine designs The large JLEIC flexibility (5-10 GeV for electrons) makes building a single IR beam pipe challenging The 5 GeV e- design has the highest beam current The 10 GeV design has the highest SR photon energies and the largest beam emittance JLEIC Collaboration Meeting Mar. 2016

JLEIC Collaboration Meeting Mar. 2016 Final Focus Sources Generic Final Focus optics The X focusing magnets are outside of the Y focusing magnets For flat beams the magnets do not fight each other Round beam optics have much stronger magnets making them much larger SR sources JLEIC is closer to round JLEIC Collaboration Meeting Mar. 2016

JLEIC Collaboration Meeting Mar. 2016 Beam pipe Surfaces We have chosen 4 Beam pipe surfaces to monitor Upstream beam pipe inside the final focus elements (-3 m to -4 m) Central IP beam pipe mask at (-1 to -2 m) Important for calculating forward scattering Central beam pipe (3 cm radius) (upstream section 0 to -50 cm) Central beam pipe (downstream section +50 cm to 0) JLEIC Collaboration Meeting Mar. 2016

JLEIC Collaboration Meeting Mar. 2016 Baseline Optics JLEIC Collaboration Meeting Mar. 2016

JLEIC Collaboration Meeting Mar. 2016 Option 1 JLEIC Collaboration Meeting Mar. 2016

JLEIC Collaboration Meeting Mar. 2016 Option 2 JLEIC Collaboration Meeting Mar. 2016

Beam pipe and beam distribution In order to compare pineapples to pineapples we have kept the beam pipe design constant between optics options For SR monitoring we trace beam particles out to 10  in x and 25  in y with a beam tail distribution Program used is SYNC_BKG. Originally QSRAD created by Al Clark of LBL (~1983). Designed exclusively for FF SR. JLEIC Collaboration Meeting Mar. 2016

JLEIC Collaboration Meeting Mar. 2016 Cases Studied We have looked at 12 different cases: 3 Optics designs Original Option 1 Option 2 2 beam energies 10 GeV 5 GeV 2 emittances Regular (56/11 nm 10 GeV and 14/2.8 nm 5 GeV) Reduced (39/7.7 nm 10 GeV and 9.8/2.0 nm 5 GeV) JLEIC Collaboration Meeting Mar. 2016

Baseline  from Fanglei Lin e- 2.4 m *=(10,2)cm 0.5 m, 16 T/m, good field r = 4 cm, rinner = 5 cm, router = 10 cm 1 m ion spectrometer  0.7 m, 44 T/m, good field r = 2 cm, rinner = 3 cm, router = 7 cm 0.7 m, 45 T/m, good field r = 4 cm, rinner = 5 cm, router = 10 cm Max. x= 4.1 mm *=(10,2)cm x= 2.1 mm x= 3.4 mm from Fanglei Lin JLEIC Collaboration Meeting Mar. 2016

Option 1  from Fanglei Lin e- Beam sizes at FFQ locations are calculated using the baseline design emittances Field gradients are given @ 10 GeV (divided by 2 @ 5 GeV) 2.6 m e- 0.5 m, 29 T/m, good field r = 4 cm, rinner = 5 cm, router = 11 cm 1 m ion spectrometer  0.7 m, 44 T/m, good field r = 3 cm, rinner = 4 cm, router = 8 cm 0.9 m, 42 T/m, good field r = 4.5 cm, rinner = 5.5 cm, router = 11 cm *=(10,2)cm 5 GeV: x,y = (1.6,0.9) mm 10 GeV: x,y = (3.2,1.8) mm 5 GeV: x,y = (2.0,0.8) mm 10 GeV: x,y = (3.9,1.6) mm 5 GeV: x,y = (2.2,0.7) mm 10 GeV: x,y = (4.4,1.4) mm Note that, beam sizes in the above plot are given at locations with maximum horizontal beta functions (i.e. maximum horizontal beam sizes) in the FFQs. One has to calculate the maximum vertical beam sizes if they are desired. from Fanglei Lin JLEIC Collaboration Meeting Mar. 2016

Option 2  from Fanglei Lin e- Beam sizes at FFQ locations are calculated using the baseline design emittances Field gradients are given @ 10 GeV  *=(10,2)cm e- 0.5 m, 28 T/m, good field r = 4.5 cm, rinner = 5.5 cm, router = 12 cm 1 m ion spectrometer 0.7 m, 40 T/m, good field r = 3 cm, rinner = 4 cm, router = 8 cm 0.7 m, 46 T/m, good field r = 5 cm, rinner = 6 cm, router = 11 cm 10 GeV: x,y = (2,2) mm 2.4 m 0.3 m, 14 T/m (permanent), good field r = 2 cm, rinner = 3 cm, router = 5 cm 10 GeV: x,y = (3.1,2.2) mm 10 GeV: x,y = (4.9,1.6) mm 10 GeV: x,y = (4.4,1.7) mm Note that, beam sizes in the above plot are given at locations with maximum horizontal beta functions (i.e. maximum horizontal beam sizes) in the FFQs. One has to calculate the maximum vertical beam sizes if they are desired. from Fanglei Lin JLEIC Collaboration Meeting Mar. 2016

JLEIC Collaboration Meeting Mar. 2016 Reminder JLEIC Collaboration Meeting Mar. 2016

JLEIC Collaboration Meeting Mar. 2016 Surface a (10 GeV) 10 GeV >10 k >50 k W Bas. High Emit. 8039 3096 <.1 Opt 1 High Emit. 1.01e6 4.14e5 5.5 Opt 2 High Emit. 4.85e6 2.09e6 27.9 Bas. Red. Emit. 0.0 0.0 0.0 Opt 1 Red. Emit. 0.0 0.0 0.0 Opt 2 Red. Emit. 1.03e6 4.09e5 5.3 JLEIC Collaboration Meeting Mar. 2016

JLEIC Collaboration Meeting Mar. 2016 Surface a (5 GeV) 5 GeV >10 k >50 k W Bas. High Emit. 0.0 0.0 0.0 Opt 1 High Emit. 0.0 0.0 0.0 Opt 2 High Emit. 3.56e6 1.28e5 9.3 Bas. Red. Emit. 0.0 0.0 0.0 Opt 1 Red. Emit. 0.0 0.0 0.0 Opt 2 Red. Emit. 7.15e5 2.23e4 1.7 JLEIC Collaboration Meeting Mar. 2016

JLEIC Collaboration Meeting Mar. 2016 Surface b (10 GeV) 10 GeV >10 k >50 k W Bas. High Emit. 3.68e7 8.74e6 134 Opt 1 High Emit. 1.48e8 1.95e7 437 Opt 2 High Emit. 2.62e8 3.32e7 762 Bas. Red. Emit. 2.24e7 5.66e6 82.7 Opt 1 Red. Emit. 6.92e7 1.01e7 210 Opt 2 Red. Emit. 1.30e8 1.62e7 379 JLEIC Collaboration Meeting Mar. 2016

JLEIC Collaboration Meeting Mar. 2016 Surface b (5 GeV) 5 GeV >10 k >50 k W Bas. High Emit. 1.04e6 815 5.1 Opt 1 High Emit. 1.52e6 1271 8.2 Opt 2 High Emit. 1.79e7 7.24e4 142 Bas. Red. Emit. 4.32e5 127 2.5 Opt 1 Red. Emit. 7.03e5 259 4.4 Opt 2 Red. Emit. 9.80e6 4.06e4 70 JLEIC Collaboration Meeting Mar. 2016

JLEIC Collaboration Meeting Mar. 2016 Surface c (10 GeV) 10 GeV >10 k >50 k W Bas. High Emit. 3.98e4 1.34e4 0.18 Opt 1 High Emit. 1.89e4 6556 0.09 Opt 2 High Emit. 4455 1772 0.03 Bas. Red. Emit. 1.41e4 4498 0.05 Opt 1 Red. Emit. 0.0 0.0 0.0 Opt 2 Red. Emit. 651 262 <0.01 JLEIC Collaboration Meeting Mar. 2016

JLEIC Collaboration Meeting Mar. 2016 Surface c (5 GeV) 5 GeV >10 k >50 k W Bas. High Emit. 0.0 0.0 0.0 Opt 1 High Emit. 0.0 0.0 0.0 Opt 2 High Emit. 1735 48.7 <0.01 Bas. Red. Emit. 0.0 0.0 0.0 Opt 1 Red. Emit. 0.0 0.0 0.0 Opt 2 Red. Emit. 56 1.0 <0.01 JLEIC Collaboration Meeting Mar. 2016

JLEIC Collaboration Meeting Mar. 2016 Surface d (10 GeV) 10 GeV >10 k >50 k W Bas. High Emit. 3.16e5 8.99e4 1.23 Opt 1 High Emit. 3.12e5 8.45e4 1.18 Opt 2 High Emit. 1.40e5 4.69e4 0.63 Bas. Red. Emit. 1.89e5 5.12e4 0.62 Opt 1 Red. Emit. 198 0.03 <0.01 Opt 2 Red. Emit. 6.25e4 1.95e4 0.26 JLEIC Collaboration Meeting Mar. 2016

JLEIC Collaboration Meeting Mar. 2016 Surface d (5 GeV) 5 GeV >10 k >50 k W Bas. High Emit. 1997 1.3 <0.01 Opt 1 High Emit. 1765 0.7 <0.01 Opt 2 High Emit. 2.30e5 5869 0.63 Bas. Red. Emit. 1258 0.65 <0.01 Opt 1 Red. Emit. 198 0.034 <0.01 Opt 2 Red. Emit. 5.80e4 994 0.17 JLEIC Collaboration Meeting Mar. 2016

JLEIC Collaboration Meeting Mar. 2016 Some results Difficult to get an IR beam pipe much smaller than a 3cm radius. Calculated the number of photons that penetrate the beam pipe For a 1mm thick pipe of Be and 10 and 25 um of Au inner layer Estimated incident angle of photons is 14 mrad Then about 2% of the incident photons penetrate Need to know how long the central pipe needs to be (assuming right now ±50 cm) Shorter pipes are easier to shield JLEIC Collaboration Meeting Mar. 2016

Photon Energy plot (10 GeV) Surface d 10 um Au 3.16105 4.49103 JLEIC Collaboration Meeting Mar. 2016

Photon Energy plot (10 GeV) Surface d 25 um Au 3.16105 2.74103 JLEIC Collaboration Meeting Mar. 2016

Photon Energy plot (5 GeV) Surface d 10 um Au 1997 6.5 JLEIC Collaboration Meeting Mar. 2016

Total SR power and photons from upstream FF quads (10 GeV) Photons Power(W) Baseline High Emit. 1.211010 3658 Option 1 High Emit. 1.531010 4834 Option 2 High Emit. 1.541010 5356 Baseline Red. Emit. 1.031010 2648 Option 1 Red. Emit. 1.281010 3384 Option 2 Red. Emit. 1.291010 3749 JLEIC Collaboration Meeting Mar. 2016

Total SR power and photons from upstream FF quads (5 GeV) Photons Power(W) Baseline High Emit. 1.301010 251 Option 1 High Emit. 1.621010 320 Option 2 High Emit. 3.301010 1337 Baseline Red. Emit. 1.091010 176 Option 1 Red. Emit. 1.351010 224 Option 2 Red. Emit. 2.761010 936 JLEIC Collaboration Meeting Mar. 2016

Surface d Option 1 (10 GeV) Smaller IP beam pipe 10 GeV >10 k >50 k W Opt 1 HE 3 cm 3.12e5 8.45e4 1.18 Opt 1 HE 2.5 cm 2.22e6 1.15e5 7.05 Opt 1 HE 2 cm 1.22e7 1.61e6 34.9 Photon rates go up almost x10 for each 5mm decrease in radius JLEIC Collaboration Meeting Mar. 2016

Where does it come from? For surface d JLEIC Collaboration Meeting Mar. 2016

JLEIC Collaboration Meeting Mar. 2016 Summary Based on this initial study of SR backgrounds Option 1 looks to be the most promising Reduced beam emittance is a big winner Masking can probably be further optimized 5 GeV beam is much easier Emittances are smaller Photon critical energies are lower JLEIC Collaboration Meeting Mar. 2016

JLEIC Collaboration Meeting Mar. 2016 Conclusions SR for the JLEIC IR looks controllable but needs further study Especially more information from the detector group about what they need at very low angles Also need feedback from detector people as to what are acceptable background rates for the inner trackers How many photons/collision going into the inner detectors are OK before occupancy or radiation damage occurs There is always more to do… JLEIC Collaboration Meeting Mar. 2016