M. VERVLOET, M. A. MARTIN-DRUMEL., D. W. TOKARYK, O. PIRALI

Slides:



Advertisements
Similar presentations
FOURIER TRANSFORM EMISSION SPECTROSCOPY AND AB INITIO CALCULATIONS ON WO R. S. Ram, Department of Chemistry, University of Arizona J. Liévin, Université.
Advertisements

Analysis of an 18 O and D enhanced lab water spectrum using variational calculations of HD 18 O and D 2 18 O spectra Michael J Down - University College.
A L INE L IST FOR H YDROGEN S ULPHIDE (H 2 S) Ala’a A. A. Azzam J. Tennyson and S. Yurchencko Department of Physics and Astronomy, University College London,
D.L. KOKKIN, N.J. REILLY, J.A. JOESTER, M. NAKAJIMA, K. NAUTA, S.H. KABLE and T.W. SCHMIDT Direct Observation of the c State of C 2 School of Chemistry,
High-Lying Rotational Levels of Water obtained by FIR Emission Spectroscopy L. H. Coudert, a M.-A. Martin, b O. Pirali, b D. Balcon, b and M. Vervloet.
Benjamin McCall and Takeshi Oka University of Chicago Therese R. Huet Universite de Lille James K. G. Watson National Research Council of Canada Overtone.
IR EMISSION SPECTROSCOPY OF AMMONIA: LINELISTS AND ASSIGNMENTS. R. Hargreaves, P. F. Bernath Department of Chemistry, University of York, UK N. F. Zobov,
INFRARED SPECTROSCOPIC STUDY ON FERMI RESONANCE OF THE EXCESS PROTON VIBRATION IN BINARY CLUSTERS Ryunosuke SHISHIDO, Asuka FUJII Department of Chemistry,
Global analysis of broadband rotation and vibration-rotation spectra of sulfur dicyanide Zbigniew Kisiel, a Manfred Winnewisser, b Brenda P. Winnewisser,
FTIR Spectroscopy of the n4 bands of 14NO3 and 15NO3
1 Renner-Teller Coupling in H 2 S + : Comparison of theory with optical spectra an PFI and MATI results G. Duxbury 1, Christian Jungen 2 and Alex Alijah.
Stark Study of the F 4     X 4  7/2 (1,0) band of FeH Jinhai Chen and Timothy C. Steimle Dept. of Chemistry& BioChem, Arizona State University,
11 The THz spectrum of GlycolAldehyde M. Goubet, T.R. Huet, I. Haykal, L. Margulès PhLAM, CNRS – Université de Lille 1 O. Pirali, P. Roy AILES beamline,
Brookhaven Science Associates U.S. Department of Energy Hot band transitions in CH 2 Kaori Kobayashi *, Trevor Sears, Greg Hall Department of Chemistry.
O. Pirali, S. Gruet, M. Vervloet AILES beamline, synchrotron SOLEIL
Emission Spectra of H 2 17 O and H 2 18 O from 320 to 2500 cm -1 Semen MIKHAILENKO 1, Georg MELLAU 2, and Vladimir TYUTEREV 3 1 Laboratory of Theoretical.
FTIR EMISSION SPECTROSCOPY AND AB INITIO STUDY OF THE TRANSIENT BO AND HBO MOLECULES 65 th Ohio State University International Symposium on Molecular Spectroscopy.
Measurements of N 2 - and O 2 -pressure broadening and pressure-induced shifts for 16 O 12 C 32 S transitions in the 3 band M.A. Koshelev and M.Yu. Tretyakov.
“Global Fit” of the high resolution infrared data of D 2 S and HDS molecules O. N. Ulenikov, E. S. Bekhtereva Physical Chemistry, ETH-Zurich, CH-8093 Zurich,
Electronic spectroscopy of CHBr and CDBr Chong Tao, Calvin Mukarakate, Mihaela Deselnicu and Scott A. Reid Department of Chemistry, Marquette University.
Electronic Spectroscopy of DHPH Revisited: Potential Energy Surfaces along Different Low Frequency Coordinates Leonardo Alvarez-Valtierra and David W.
Spectroscopy of He-, Ne-, and Ar - C 2 D 2 complexes Mojtaba Rezaei, Nasser Moazzen-Ahmadi Department of Physics and Astronomy University of Calgary A.R.W.
New 12 C 2 H 2 measurements using synchrotron SOLEIL David Jacquemart, Nelly Lacome, Olivier Piralli 66th OSU international symposium on molecular spectroscopy.
HIGH RESOLUTION SPECTROSCOPY OF THE TWO LOWEST VIBRATIONAL STATES OF QUINOLINE C 9 H 7 N O. PIRALI, Z. KISIEL, M. GOUBET, S. GRUET, M.-A. MARTIN-DRUMEL,
Continuous-Wave Cavity Ringdown Study of the 14 N 2 + Meinel System 2-1 Band and the First Positive Band System of N 2 * Departments of Chemistry and Astronomy,
HIGH RESOLUTION LASER SPECTROSCOPY OF IRIDIUM MONOFLUORIDE AND IRIDIUM MONOCHLORIDE A.G. ADAM, L. E. DOWNIE, S. J. FORAN, A. D. GRANGER, D. FORTHOMME,
OSU International Symposium on Molecular Spectroscopy June 18 – 22, TF Infrared/Raman -- TF01, Tuesday, June 19, 2012.
Dispersed fluorescence studies of jet-cooled HCF and DCF: Vibrational Structure of the X 1 A state.
Time-resolved Fourier transform infrared emission spectra of HNC/HCN K. Kawaguchi & A. Fujimoto Okayama University.
EXPERIMENTAL TRANSMISSION SPECTRA OF HOT AMMONIA IN THE INFRARED Monday, June 22 nd 2015 ISMS 70 th Meeting Champaign, Illinois EXPERIMENTAL TRANSMISSION.
The Origin Band of the b – a System of CH 2 Gregory Hall, and Trevor Sears Department of Chemistry Brookhaven National Laboratory Bor-Chen Chang Department.
A. Nishiyama a, K. Nakashima b, A. Matsuba b, and M. Misono b a The University of Electro-Communications b Fukuoka University High Resolution Spectroscopy.
Heavy Atom Vibrational Modes and Low-Energy Vibrational Autodetachment in Nitromethane Anions Michael C. Thompson, Joshua H. Baraban, Devin A. Matthews,
High Resolution FIR and IR Spectroscopy of Methanol Isotopologues R.M. Lees, Li-Hong Xu Centre for Laser, Atomic and Molecular Sciences (CLAMS) Department.
High-resolution Fourier transform emission spectroscopy of the A 2  + – X 2  transition of the BrCN + ion. June 20, 2005, Ohio state Univ. Yoshihiro.
HOT EMISSION SPECTRA FOR ASTRONOMICAL APPLICATIONS: CH 4 & NH 3 R. Hargreaves, L. Michaux, G. Li, C. Beale, M. Irfan and P. F. Bernath 1 Departments of.
High Resolution Spectroscopy of Strontium Monomethoxide (SrOCH 3 ) W.S. Hopkins, A. Read*, A.G. Adam, C. Linton*, D.W. Tokaryk * Departments of Chemistry.
Fourier Transform Emission Spectroscopy of New Visible Systems of NbN R. S. Ram Department of Chemistry, University of Arizona, Tucson, AZ And P.
THE ANALYSIS OF 2ν3 BAND OF HTO
ASSIGNING OF VIBRATION-ROTATION SPECTRA USING THE LWW PROGRAM PACKAGE
ANH T. LE, GREGORY HALL, TREVOR SEARSa Division of Chemistry
Analysis of bands of the 405 nm electronic transition of C3Ar
CO2 dimer: Five intermolecular vibrations observed via infrared combination bands Jalal Norooz Oliaee, Mehdi Dehghany, Mojtaba Rezaei, Nasser Moazzen-Ahmadi.
Jack C. Harms, Leah C. O’Brien,* and James J. O’Brien
Observations of low-lying states of NiD; multi-isotope analysis
Gas phase rovibrational spectroscopy of DMSO, Part I: « When a synchrotron source reveals an unusual rotational behaviour » Arnaud Cuisset, Dmitrii Sadovskii.
HIGH RESOLUTION SPECTROSCOPY OF THE CARBON CAGE ADAMANTANE C10H16
INFRARED SPECTROSCOPY OF DISILICON-CARBIDE, Si2C
V. Ilyushin1, I. Armieieva1, O. Zakharenko2, H. S. P. Müller2, F
The Near-IR Spectrum of CH3D
A. Barbe, M. R. De Backer-Barilly, Vl. G. Tyuterev, D. Romanini1, S
High-Resolution Spectroscopy and Analysis of the n3/2n4 Dyad of CF4
SIMULATIONS OF VIBRONIC LEVELS IN DEGENERATE ELECTRONIC STATES IN THE PRESENCE OF JAHN-TELLER COUPLING – EXPANSION OF PES THROUGH THIRD ORDER VADIM L.
NH3 measurements in the far-IR
High Resolution Laser Spectroscopy of Iridium Monofluoride
Single Vibronic Level (SVL) emission spectroscopy of CHBr: Vibrational structure of the X1A and a3A  states.
The Rotational Spectrum of cis- and trans-HSSOH
Singlet-Triplet Coupling and the Non-Symmetric Bending Modes
Lowest vibrational states of acrylonitrile
CHONG TAO, D. BRUSSE, Y. MISHCHENKO, C. MUKARAKATE and S. A. REID,
High Resolution Infrared Spectroscopy of Linear Cluster Ions
Fourier Transform Emission Spectroscopy of CoH and CoD
Analysis of torsional splitting in the ν8 band of propane near 870
Fourier Transform Infrared Spectral
HIGH RESOLUTION LASER SPECTROSCOPY OF NICKEL MONOBORIDE, NiB
The torsional spectrum of doubly deuterated methanol CHD2OH
J. L. Lemaire (Inst. des Sciences Moleculaires d’Orsay), M
F H F O Semiexperimental structure of the non rigid BF2OH molecule (difluoroboric acid) by combining high resolution infrared spectroscopy and ab initio.
Spectroscopy, Structure, and Ionization Energy of BeOBe
Presentation transcript:

Fourier-Transform absorption spectroscopy of C3 in the 3 antisymmetric stretch mode region M. VERVLOET, M. A. MARTIN-DRUMEL., D. W. TOKARYK, O. PIRALI ISMO, CNRS-Universite Paris-Saclay, Orsay, France AILES beamline, Synchrotron SOLEIL, Saint-Aubin, France Department of Physics, University of New Brunswick, Fredericton, NB, Canada

Objective: record the (0,n2l,1) - (0,n2l,0) transitions Context C3 is a linear, symmetric molecule 4050 Å band from comet spectra first seen in 1882; assigned to C3 by Douglas (1951) Gausset et al. (1965) studied the A 1Пu – X 1Σg+ electronic system – the analysis revealed a large Renner Teller splitting in the A 1Пu state and low energy (about 65 cm-1) of the X 1Σg+ 2 bending state 3 vib modes (1, 2l, 3), 2 and 3 and IR active: diode laser spectroscopy of the 3 band by Kawaguchi et al, J. Chem. Phys, 91 (1989) and 2 band by Schmuttenmaer et al. 1990 Lines of the 3 band of C3 detected in the circumstellar envelopes (Hinkle et al., Science 1988) and absorption lines of 2 band (Giesen et al., ApJ 2001) Objective: record the (0,n2l,1) - (0,n2l,0) transitions

Experimental set-up on the AILES beamline of SOLEIL Electrical DC discharge coupled to the FT 24 m absorption pathlength Resolution = 100MHz (0.004 cm-1) Discharge : ~ 1KV / 1A Gas mixture : CH4 seeded in 1 mbar He Intense lines are due to CO

Comparison with diode laser spectrum: (0,n2l,1) - (0,n2l,0) (0,2,0) P(40) (0,2,0) R(13) R(14) (0,1,0) P(7) (0,1,0)  P(6) Kawaguchi et al. (1989) (0,0,0) P(40) Wavenumbers (cm-1)

Stimulated Emission Pumping Data from electronic transitions to support our analysis In addition to IR data (Kawaguchi et al., Krieg et al.) and ab-initio calculations (Per Jensen) Analysis of the 4050 Ǻ group : A 1Пu – X 1Σg+, L. Gausset et al. Astrophys. J. 142, 45 (1965) (000) , (010), (020), (020), (030) , (040)  Stimulated Emission Pumping - Nothrup and Sears (0,2n 2,0) states with l= 0 (), 2 () Rohlfing and Goldsmith (0, 2n+1 2, 1) states with l=1 ()

Spectral analysis procedure and effective Hamiltonian J-1 R(J-1) J J+1 P(J+1) F2(J) for the lower state = R(J-1)-P(J+1) R(J) P(J) F2(J) for the lower state = R(J)-P(J) (0, 2,1) (0, 2,1) USCD (0, 2,0) LSCD (0, 2,0) Formulation from Maki et al, J. Mol. Spec. 36, 433-447 (1970) includes the l-type resonance < J,v,l|H|J,v,l > = Bv[J(J+1) - l2] -Dv [J(J+1) - l2]2 + Hv[J(J+1) - l2]3 < J,v,l|H|J,v,l ± 2> = (1/4)q[(v l)(v ± l + 2]½ {[J(J+1)-l(l ±1)] [J(J+1) – (l ± 1)(l ± 2}½ q → q +qjJ(J+1) + qjjJ2(J+1)2 ±

Analysis (021)-(020); (021) - (020) Extension of Kawaguchi et al observations up to J=55 Plots of the 2(J) for (0,2,1)  states shows a local perturbation for J=33-34. Proposition of (190)  state as the perturber level. Based on SEP data from Northrup and Sears who observed (180)  at 1993 cm-1 2(J) J(J+1)

Analysis of (041) - (040) ; (041) - (040); (041) - (040) Gausset et al. provide term values for (040) state. Northrup and Sears provide low J combination differences for the (040) state Lines involving (040) are more intense than the l=0 and 2 and the l-doubling effect is weaker Analysis of (041) - (040)  band rely on the model and fit. 41 lines f levels, Jmax=45 Ev B/cm-1 D/10-5 cm-1 H/10-9 cm-1 q/10-2 cm-1 qJ/10-6 cm-1 (0,4,0) Σ 286.52 0.468074(30) 0.2744(38) 0.133(14) 0.4885(8) -0.3685(31) (0,4,0) Δ 287.250(10) 0.468929(26) 0.2929(27) 0.181(9) (0,4,0) Γ 289.302(11) 0.471883(23) 0.3369(25) 0.200(8) Ev B/cm-1 D/10-5 cm-1 H/10-9 cm-1 q/10-2 cm-1 qJ/10-6 cm-1 (0,4,1) Σ 2260.3657(18) 0.472022(28) 0.3130(37) 0.109(14) 0.5706(8) -0.4848(30) (0,4,1) Δ 2257.3903(97) 0.474334(24) 0.3704(26) 0.214(9) (0,4,1) Γ 2249.312(11) 0.481029(23) 0.5116(25) 0.369(8) 200 lines (, ,  states); RMS of the fit about 0.003 cm-1 (exp accuracy about 0.0005 cm-1)

Summary (050) R(31) R(33) (050) R(34) (040) R(18) (040) R(21) R(23) (040)  (040) R(27) R(26) (030) R(8) R(9) (030) R(14) R(16) R(15) Extension of the analysis to bands involving higher quanta of 2 Comparison with recent theoretical calculations (Schröder and Sebald, J. Chem. Phys 2016) We plan to analyse our data using semi-rigid bender approach (S. Ross, UNB)

Atlas of Comet 122P/de Vico: Cochran and Cochran, Icarus 2002 C3 in cometary spectra: « 4050 Å group » : A1u – X1g+ (Gausset el al. 1965 and Merer 1967) Span from 3350 Å to 4700 Å

Atlas of Comet 122P/de Vico: Cochran and Cochran, Icarus 2002 000 -000 Пu – Σg+ 000 -020 Пu – Σg+ 000 -040 Пu – Σg+ 000 -040 Пu – Δg 020 -020 Пu- – Σg+ 020 -040 Пu- – Σg+ 020 -000 Пu+ – Σg 020 -020 Пu+ – Σg 020 -020 Пu+ – Δg 020 -040 Пu+ – Σg 020 -040 Пu+ – Δg 040 -000 Пu- – Σg+ 040 -020 Пu- – Σ 100 -000 Пu – Σg+ 010 -010 Δg – Пu 010 -030 Δg – Пu 010 -010 Σg- – Пu 010 -030 Σg- – Пu 010 -010 Σg+ – Пu 010 -030 Σg+ – Пu 030 -030 Σg- – Пu

Atlas of Comet 122P/de Vico: Cochran and Cochran, Icarus 2002 Identification of 16 U lines all shifted by 0.3 cm-1 in comparison to lab data 8 for 010 -050 Σg- – Пu 8 for 010 -050 Σg+ – Пu Due to uncertainty of the energy of (051) that we use to determine (050) involved in the cometary band (about 0.5 cm-1) Gausset A (010) Rohlfing X (051) X (050) X (000) THANK YOU!