For an ionic compound the lattice enthalpy is the heat

Slides:



Advertisements
Similar presentations
A2 – CHEMICAL ENERGETICS
Advertisements

BORN-HABER CYCLES A guide for A level students KNOCKHARDY PUBLISHING 2008 SPECIFICATIONS.
15.2 Born-Haber Cycle Define and apply the terms lattice enthalpy, and electron affinity Explain how the relative sizes and the charges of.
Using Born Haber Cycles to Determine Lattice Enthalpies
Enthalpy Change of formation is the enthalpy change when one mole of a compound is formed from its constituent elements under standard conditions. Enthalpy.
Title: Lesson 6 Born-Haber Cycles and Lattice Enthalpies Learning Objectives: – Understand the term lattice enthalpy – Use Born-Haber cycles to calculate.
Formation of Binary Ionic Compounds Binary Ionic Compound n Binary- two n Ionic- ions n Compound- joined together.
Chapter 7 Ionic Bonding 7.1 Ionic Bonds: Donating and Accepting Electrons 7.2 Energetics of Formation of Ionic Compounds 7.3 Stoichiometry of Ionic.
Ionic Bonding  Electrons are transferred  Electronegativity differences are generally greater than 1.7  The formation of ionic bonds is always exothermic!
For an ionic compound the lattice enthalpy is the heat energy released when one mole of solid in its standard state is formed from its ions in the gaseous.
Born-Haber cycles, and lattice energy
CI 4.6 – Born-Haber Cycle (C) JHUDSON For an ionic compound the lattice enthalpy is the enthalpy change when one mole of solid in its standard state.
Ionic Bonding  Electrons are transferred  Electronegativity differences are generally greater than 1.7  The formation of ionic bonds is always exothermic!
Lattice Energy & the Born-Haber Cycle g.recall the stages involved in the formation of a solid ionic crystal from its elements and that this leads to a.
A method to calculate Lattice Enthalpies
Formation of Ionic compounds
1 Born-Haber Cycles enthalpy H magnesium chloride MgCl 2 (s) Mg 2+ (g) + 2Cl - (g) H lattice Mg (s) + Cl 2 (g) H formation H atomisation Mg (g) + Cl.
Ionic Compounds What holds them together?.
1 For an ionic compound the lattice enthalpy is the heat energy released when one mole of solid in its standard state is formed from its ions in the gaseous.
Chapter 811 Chapter 8 Basic Concepts of Chemical Bonding CHEMISTRY The Central Science 9th Edition.
ENERGETICS IB Topics 5 & 15 PART 3 :Energy Cycles.
Born-Haber cycles L.O.:  Define and apply the terms enthalpy of formation, ionisation enthalpy, enthalpy of atomisation of an element and of a compound,
BORN-HABER CYCLES. H NaCl (s) Na + (g) + Cl - (g)  H lattice energy of formation Na (s) + ½ Cl 2 (g)  H formation  H atomisation(s) Na (g) + Cl (g)
Unlocking Potential TechDis Accessibility Essentials 3: Creating Accessible Presentations This presentation on ‘The Born-Haber Cycle’ highlights how complex.
Born-Haber Cycle Section 15.2 (AHL). Lattice Enthalpy Of an ionic crystal: the heat energy absorbed (at constant pressure) when 1 mol of solid ionic compound.
Perfect ionic model.
Mg(s) + C l 2 (g) MgC l 2 (s) Mg(g) + C l 2 (g) Mg(g) + 2C l (g) Mg 2+ (g) + 2C l – (g) 7 Mg + (g) + 2C l (g) Mg 2+ (g) + 2C l (g) Enthalpy.
Basic Concepts of Chemical Bonding
Section 12.4 Bonding in Solids
IB1 Chemistry HL Energetics Why do chemical reactions happen?
Unit 2 Atoms and Bonding 2.81 Ionic Bonding Textbook ch 8.2.
Energetics HL only 15.1 Standard Enthalpy Changes Standard Enthalpy of Formation,  H Ϧ f The enthalpy change when 1 mole of a compound is produced from.
© A Jul-12. H NaCl (s) Na + (g) + Cl - (g)  H lattice energy of formation Na (s) + ½ Cl 2 (g)  H formation  H atomisation(s)
2Na(s) + Cl 2 (g)  2NaCl (s) Synthesizing an Ionic Compound.
TOPIC 15 ENERGETICS/THERMOCHEMISTRY 15.1 ENERGY CYCLES.
Lattice enthalpy Textbook reference: p Born-Haber cycles L.O.:  Explain and use the term: lattice enthalpy.  Use the lattice enthalpy of a simple.
Enthalpy Changes in chemical and physical Reactions
Advanced Higher Chemistry Unit 2
Thermochemistry AH Chemistry, Unit 2(c).
Chemsheets AS006 (Electron arrangement)
THERMOCHEMISTRY.
Chemical Bonds Chemical bonds are strong electrostatic forces holding atoms or ions together, which are formed by the rearrangement (transfer or sharing)
Lattice enthalpy For an ionic compound the lattice enthalpy is the heat energy released when one mole of solid in its standard state is formed from its.
Chapter 15.1 notes: Energy Cycles Chapter 15.2: entropy & spontaneity
15.1 Energy cycles Representative equations can be used for enthalpy/energy of hydration, ionization, atomization, electron affinity, lattice, covalent.
Ionic Bonding Lattice Energy
15.2 Born-Haber Cycle Define and apply the terms lattice enthalpy, and electron affinity Explain how the relative sizes and the charges.
Ionic Compounds What holds them together?.
Ionic Compounds What holds them together?.
Chapter 8 Basic Concepts of Chemical Bonding
Lewis Model Bonding models and ionic bonds
Ionic Compounds What holds them together?.
Lattice Energies AP Material.
15.2 Born-Haber Cycle Define and apply the terms lattice enthalpy, and electron affinity Explain how the relative sizes and the charges.
Born-Haber Cycles ΔHat (Na(s)) 109 kJ mol-1 Bond dissociation (Cl2(g))
LEWIS STRUCTURES BONDS IONIC BONDING
Born-Haber Cycle.
Thermodynamics Definitions Forming Ionic Compounds
Chemical Bonds LACC Chem101.
A guide for A level students KNOCKHARDY PUBLISHING
A guide for A level students KNOCKHARDY PUBLISHING
Ionic Compounds What holds them together?.
Lattice Energy, DUlattice
15.2 Born-Haber Cycle Define and apply the terms lattice enthalpy, and electron affinity Explain how the relative sizes and the charges.
IB Topics 5 & 15 PART 3: Energy Cycles
8.5 Energy Effects in Ionic Compounds
Chemsheets AS006 (Electron arrangement)
Ionic Compounds What holds them together?.
Chapter 9 Chemical Bonding I: Lewis Theory
IONIC RADIUS WHY DO ATOMS BOND TO FORM COMPOUNDS?.
Presentation transcript:

For an ionic compound the lattice enthalpy is the heat energy released when one mole of solid in its standard state is formed from its ions in the gaseous state. This value cannot be determined directly and so we make use of changes for which data are available and link them together with an enthalpy cycle. This enthalpy cycle is based on the formation of the compound from its elements in their standard states.

BORN-HABER CYCLE FOR SODIUM CHLORIDE

kJ H= +107kJmol-1 Atomisation of sodium +800 +700 +600 +500 +400 +300 +200 Na(g) + 1/2 Cl2(g) +100 H= +107kJmol-1 Na(s) + 1/2 Cl2(g) -400 -300 -200 -100 Atomisation of sodium

kJ H = +121kJmol-1 Atomisation of chlorine +800 +700 +600 +500 +400 +300 Na(g) + Cl(g) +200 H = +121kJmol-1 Na(g) + 1/2 Cl2(g) +100 Na(s) + 1/2 Cl2(g) -400 -300 -200 -100 Atomisation of chlorine

kJ e- e- e- e- e- e- e- e- e- e- e- + H = +502kJmol-1 +800 Na+(g) + Cl(g) +700 e- e- e- e- +600 e- e- +500 e- e- +400 e- H = +502kJmol-1 e- e- +300 Na(g) + Cl(g) +200 + Na(g) + 1/2 Cl2(g) +100 Na(s) + 1/2 Cl2(g) -400 -300 -200 -100 First Ionisation of sodium

First electron affinity of chlorine kJ kJ kJ +800 +800 +800 Na+(g) + Cl(g) +700 +700 +700 +600 +600 +600 H = -355kJmol-1 +500 +500 +500 +400 +400 +400 Na+(g) + Cl-(g) +300 +300 +300 Na(g) + Cl(g) Na(g) + Cl(g) Na(g) + Cl(g) +200 +200 +200 - e- Na(g) + 1/2 Cl2(g) Na(g) + 1/2 Cl2(g) Na(g) + 1/2 Cl2(g) +100 +100 +100 Na(s) + 1/2 Cl2(g) Na(s) + 1/2 Cl2(g) Na(s) + 1/2 Cl2(g) -400 -300 -200 -100 -400 -300 -200 -100 -400 -300 -200 -100 First electron affinity of chlorine

kJ kJ kJ - + H = -411kJmol-1 +800 +800 +800 +700 +700 +700 +600 +600 Na+(g) + Cl(g) +700 +700 +700 +600 +600 +600 +500 +500 +500 +400 +400 +400 Na+(g) + Cl-(g) +300 +300 +300 - + Na(g) + Cl(g) Na(g) + Cl(g) Na(g) + Cl(g) +200 +200 +200 Na(g) + 1/2 Cl2(g) Na(g) + 1/2 Cl2(g) Na(g) + 1/2 Cl2(g) +100 +100 +100 Na(s) + 1/2 Cl2(g) Na(s) + 1/2 Cl2(g) Na(s) + 1/2 Cl2(g) -400 -300 -200 -100 -400 -300 -200 -100 -400 -300 -200 -100 H = -411kJmol-1 Formation of sodium chloride NaCl(s)

kJ kJ kJ - - - - - + + + + H = -786 kJmol-1 +800 +800 +800 +700 +700 Na+(g) + Cl(g) +700 +700 +700 +600 +600 +600 +500 +500 +500 +400 +400 +400 Na+(g) + Cl-(g) +300 +300 +300 Na(g) + Cl(g) Na(g) + Cl(g) Na(g) + Cl(g) +200 +200 +200 - - Na(g) + 1/2 Cl2(g) Na(g) + 1/2 Cl2(g) Na(g) + 1/2 Cl2(g) + +100 +100 +100 + - + Na(s) + 1/2 Cl2(g) Na(s) + 1/2 Cl2(g) Na(s) + 1/2 Cl2(g) - + - -400 -300 -200 -100 -400 -300 -200 -100 -400 -300 -200 -100 H = -786 kJmol-1 Lattice enthalpy for sodium chloride NaCl(s)