And now for something completely different!

Slides:



Advertisements
Similar presentations
Estimating Distinct Elements, Optimally
Advertisements

1+eps-Approximate Sparse Recovery Eric Price MIT David Woodruff IBM Almaden.
Limitations of Quantum Advice and One-Way Communication Scott Aaronson UC Berkeley IAS Useful?
The Complexity of Agreement A 100% Quantum-Free Talk Scott Aaronson MIT.
The Average Case Complexity of Counting Distinct Elements David Woodruff IBM Almaden.
Lower Bounds for Non-Black-Box Zero Knowledge Boaz Barak (IAS*) Yehuda Lindell (IBM) Salil Vadhan (Harvard) *Work done while in Weizmann Institute. Short.
Of 23 09/24/2013HLF: Reliable Meaningful Communication1 Reliable Meaningful Communication Madhu Sudan Microsoft, Cambridge, USA.
Of 29 12/02/2013Purdue: Uncertainty in Communication1 Communication amid Uncertainty Madhu Sudan Microsoft, Cambridge, USA Based on: -Universal Semantic.
Approximate List- Decoding and Hardness Amplification Valentine Kabanets (SFU) joint work with Russell Impagliazzo and Ragesh Jaiswal (UCSD)
Of 24 11/20/2012TIFR: Deterministic Communication Amid Uncertainty1 ( Deterministic ) Communication amid Uncertainty Madhu Sudan Microsoft, New England.
The Communication Complexity of Approximate Set Packing and Covering
Gillat Kol (IAS) joint work with Ran Raz (Weizmann + IAS) Interactive Channel Capacity.
Universal Communication Brendan Juba (MIT) With: Madhu Sudan (MIT)
Of 27 01/06/2015CMI: Uncertain Communication1 Communication Amid Uncertainty Madhu Sudan Microsoft Research Based on Juba, S. (STOC 2008, ITCS 2011) Juba,
Of 12 03/22/2012CISS: Compression w. Uncertain Priors1 Compression under uncertain priors Madhu Sudan Microsoft, New England Based on joint works with:
On the tightness of Buhrman- Cleve-Wigderson simulation Shengyu Zhang The Chinese University of Hong Kong On the relation between decision tree complexity.
1 Algorithms for Large Data Sets Ziv Bar-Yossef Lecture 13 June 22, 2005
Correlation testing for affine invariant properties on Shachar Lovett Institute for Advanced Study Joint with Hamed Hatami (McGill)
Of 19 June 15, 2015CUHK: Communication Amid Uncertainty1 Communication Amid Uncertainty Madhu Sudan Microsoft Research Based on joint works with Brendan.
Umans Complexity Theory Lectures Lecture 1a: Problems and Languages.
Of 27 August 6, 2015KAIST: Reliable Meaningful Communication1 Reliable Meaningful Communication Madhu Sudan Microsoft Research.
The Price of Uncertainty in Communication Brendan Juba (Washington U., St. Louis) with Mark Braverman (Princeton)
Of 27 12/03/2015 Boole-Shannon: Laws of Communication of Thought 1 Laws of Communication of Thought? Madhu Sudan Harvard.
Of 22 10/07/2015UMass: Uncertain Communication1 Communication Amid Uncertainty Madhu Sudan Microsoft Research Based on Juba, S. (STOC 2008, ITCS 2011)
Of 22 10/30/2015WUSTL: Uncertain Communication1 Communication Amid Uncertainty Madhu Sudan Harvard Based on Juba, S. (STOC 2008, ITCS 2011) Juba, S. (STOC.
Massive Data Sets and Information Theory Ziv Bar-Yossef Department of Electrical Engineering Technion.
1 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681 Richard Cleve DC 3524 Course.
Gillat Kol (IAS) joint work with Anat Ganor (Weizmann) Ran Raz (Weizmann + IAS) Exponential Separation of Information and Communication.
1 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681 Richard Cleve DC 3524 Course.
Of 25 January 7, 2016 CBS: Math, Proofs, Computing 1 Mathematics, Proofs and Computation Madhu Sudan Harvard.
Imperfectly Shared Randomness
Random Access Codes and a Hypercontractive Inequality for
Communication Amid Uncertainty
Information Complexity Lower Bounds
Introduction to Randomized Algorithms and the Probabilistic Method
New Characterizations in Turnstile Streams with Applications
Computing and Compressive Sensing in Wireless Sensor Networks
On Testing Dynamic Environments
Introduction to Machine Learning
Communication Amid Uncertainty
General Strong Polarization
Communication Amid Uncertainty
Testing with Alternative Distances
Effcient quantum protocols for XOR functions
General Strong Polarization
Turnstile Streaming Algorithms Might as Well Be Linear Sketches
Communication Amid Uncertainty
Linear sketching with parities
When are Fuzzy Extractors Possible?
Locally Decodable Codes from Lifting
Quantum Information Theory Introduction
How to Delegate Computations: The Power of No-Signaling Proofs
Uncertain Compression
The Communication Complexity of Distributed Set-Joins
Linear sketching over
On the effect of randomness on planted 3-coloring models
General Strong Polarization
When are Fuzzy Extractors Possible?
Linear sketching with parities
Imperfectly Shared Randomness
Universal Semantic Communication
On Approximating Covering Integer Programs
Communication Amid Uncertainty
CS21 Decidability and Tractability
What should I talk about? Aspects of Human Communication
Shengyu Zhang The Chinese University of Hong Kong
General Strong Polarization
General Strong Polarization
Oded Goldreich Weizmann Institute of Science
Stronger Connections Between Circuit Analysis and Circuit Lower Bounds, via PCPs of Proximity Lijie Chen Ryan Williams.
Presentation transcript:

And now for something completely different! Communication Amid Uncertainty Madhu Sudan Harvard University Based on joint works with Brendan Juba, Oded Goldreich, Adam Kalai, Sanjeev Khanna, Elad Haramaty, Jacob Leshno, Clement Canonne, Venkatesan Guruswami, Badih Ghazi, Pritish Kamath, Ilan Komargodski and Pravesh Kothari. August 17, 2017 Oberwolfach: Uncertain Communication

Boole’s “modest” ambition “The design of the following treatise is to investigate the fundamental laws of those operations of the mind by which reasoning is performed; to give expression to them in the symbolical language of a Calculus, and upon this foundation to establish the science of Logic and construct its method; to make that method itself the basis of a general method for the application of the mathematical doctrine of Probabilities; and, finally, to collect from the various elements of truth brought to view in the course of these inquiries some probable intimations concerning the nature and constitution of the human mind.” [G.Boole, “On the laws of thought …” p.1] August 17, 2017 Oberwolfach: Uncertain Communication

Oberwolfach: Uncertain Communication Sales Pitch + Intro Most of communication theory [a la Shannon, Hamming]: Built around sender and receiver perfectly synchronized. So large context (codes, protocols, priors) ignored. Most Human communication (also device-device) … does not assume perfect synchronization. So context is relevant: Qualitatively (receiver takes wrong action) and Quantitatively (inputs are long!!) August 17, 2017 Oberwolfach: Uncertain Communication

Aside: Contextual Proofs & Uncertainty Mathematical proofs assume large context. “By some estimates a proof that 2+2=4 in ZFC would require about 20000 steps … so we will use a huge set of axioms to shorten our proofs – namely, everything from high-school mathematics” [Lehman,Leighton,Meyer] Context shortens proofs. But context is uncertain! What is “high school mathematics” Is it a fixed set of axioms? Or a set from which others can be derived? Is the latter amenable to efficient reasoning? What is efficiency with large context? August 17, 2017 Oberwolfach: Uncertain Communication

Oberwolfach: Uncertain Communication Sales Pitch + Intro Most of communication theory [a la Shannon, Hamming]: Built around sender and receiver perfectly synchronized. So large context (codes, protocols, priors) ignored. Most Human communication (also device-device) … does not assume perfect synchronization. So context is relevant: Qualitatively (receiver takes wrong action) and Quantitatively (inputs are long!!) Theory? What are the problems? Starting point = Shannon? Yao? August 17, 2017 Oberwolfach: Uncertain Communication

Communication Complexity The model (with shared randomness) 𝑥 𝑦 𝑓: 𝑥,𝑦 ↦Σ 𝑅=$$$ Usually studied for lower bounds. This talk: CC as +ve model. Alice Bob 𝐶𝐶 𝑓 =# bits exchanged by best protocol 𝑓(𝑥,𝑦) w.p. 2/3 August 17, 2017 Oberwolfach: Uncertain Communication

Aside: Easy CC Problems [Ghazi,Kamath,S’15] ∃ Problems with large inputs and small communication? Equality testing: 𝐸𝑄 𝑥,𝑦 =1⇔𝑥=𝑦; 𝐶𝐶 𝐸𝑄 =𝑂 1 Hamming distance: 𝐻 𝑘 𝑥,𝑦 =1⇔Δ 𝑥,𝑦 ≤𝑘; 𝐶𝐶 𝐻 𝑘 =𝑂(𝑘 log 𝑘 ) [Huang etal.] Small set intersection: ∩ 𝑘 𝑥,𝑦 =1⇔ wt 𝑥 , wt 𝑦 ≤𝑘 & ∃𝑖 𝑠.𝑡. 𝑥 𝑖 = 𝑦 𝑖 =1. 𝐶𝐶 ∩ 𝑘 =𝑂(𝑘) [Håstad Wigderson] Gap (Real) Inner Product: 𝑥,𝑦∈ ℝ 𝑛 ; 𝑥 2 , 𝑦 2 =1; 𝐺𝐼 𝑃 𝑐,𝑠 𝑥,𝑦 =1 if 𝑥,𝑦 ≥𝑐; =0 if 𝑥,𝑦 ≤𝑠; 𝐶𝐶 𝐺𝐼 𝑃 𝑐,𝑠 =𝑂 1 𝑐−𝑠 2 ; [Alon, Matias, Szegedy] Protocol: Fix ECC 𝐸: 0,1 𝑛 → 0,1 𝑁 ; Shared randomness: 𝑖← 𝑁 ; Exchange 𝐸 𝑥 𝑖 , 𝐸 𝑦 𝑖 ; Accept iff 𝐸 𝑥 𝑖 =𝐸 𝑦 𝑖 . 𝑝𝑜𝑙𝑦 𝑘 Protocol: Use common randomness to hash 𝑛 →[ 𝑘 2 ] 𝑥=( 𝑥 1 , …, 𝑥 𝑛 ) 𝑦= 𝑦 1 , …, 𝑦 𝑛 〈𝑥,𝑦〉≜ 𝑖 𝑥 𝑖 𝑦 𝑖 Main Insight: If 𝐺←𝑁 0,1 𝑛 , then 𝔼 𝐺,𝑥 ⋅ 𝐺,𝑦 =〈𝑥,𝑦〉 Unstated philosophical contribution of CC a la Yao: Communication with a focus (“only need to determine 𝑓 𝑥,𝑦 ”) can be more effective (shorter than 𝑥 ,𝐻 𝑥 ,𝐻 𝑦 ,𝐼(𝑥;𝑦)… ) August 17, 2017 Oberwolfach: Uncertain Communication

Modelling Shared Context + Imperfection 1 Many possibilities. Ongoing effort. Alice+Bob may have estimates of 𝑥 and 𝑦. More generally: 𝑥,𝑦 close (in some sense). Knowledge of 𝑓 – function Bob wants to compute may not be exactly known to Alice! Shared randomness Alice + Bob may not have identical copies. 3 2 August 17, 2017 Oberwolfach: Uncertain Communication

Oberwolfach: Uncertain Communication 1. Compression Classical compression: Alice ←𝑃, 𝑚∼𝑃; Bob ←𝑃; Alice → Bob: 𝑦= 𝐸 𝑃 (𝑚) ; Bob 𝑚 = 𝐷 𝑃 𝑦 ≟𝑚; [Shannon]: 𝑚 =𝑚; w. 𝔼 𝑚∼𝑃 𝐸 𝑃 𝑚 ≤𝐻 𝑃 +1 𝐻 𝑃 ≝ 𝔼 𝑚∼𝑃 [− log 𝑃 𝑚 ] Uncertain compression [Juba,Kalai,Khanna,S.] Alice ←𝑃, 𝑚∼𝑃; Bob ←𝑄; Alice → Bob: 𝑦= 𝐸 𝑃 (𝑚) ; Bob 𝑚 = 𝐷 𝑄 𝑦 ≟𝑚; 𝑃,𝑄 Δ-close: ∀𝑚 log 𝑃(𝑚) − log 𝑄(𝑚) ≤Δ Can we get 𝔼 𝑚∼𝑃 𝐸 𝑃 𝑚 ≤𝑂 𝐻 𝑃 +Δ ? [JKKS] – Yes – with shared randomness. [CGMS] – Yes – with shared correlation. [Haramaty+S.] – Deterministically 𝑂(𝐻 𝑃 + log log |Ω|) Universe August 17, 2017 Oberwolfach: Uncertain Communication

Deterministic Compression: Challenge Say Alice and Bob have rankings of N players. Rankings = bijections 𝜋, 𝜎 : 𝑁 → 𝑁 𝜋 𝑖 = rank of i th player in Alice’s ranking. Further suppose they know rankings are close. ∀ 𝑖∈ 𝑁 : 𝜋 𝑖 −𝜎 𝑖 ≤2. Bob wants to know: Is 𝜋 −1 1 = 𝜎 −1 1 How many bits does Alice need to send (non-interactively). With shared randomness – 𝑂(1) Deterministically? 𝑂 1 ? 𝑂( log 𝑁 )?𝑂( log log log 𝑁)? With Elad Haramaty: 𝑂 ( log ∗ 𝑛 ) August 17, 2017 Oberwolfach: Uncertain Communication

Compression as a proxy for language Information theoretic study of language? Goal of language: Effective means of expressing information/action. Implicit objective of language: Make frequent messages short. Compression! Frequency = Known globally? Learned locally? If latter – every one can’t possibly agree on it; Yet need to agree on language (mostly)! Similar to problem of Uncertain Compression. Studied formally in [Ghazi,Haramaty,Kamath,S. ITCS 17] August 17, 2017 Oberwolfach: Uncertain Communication

2. Imperfectly Shared Randomness Recall: Communication becomes more effective with randomness. Identity, Hamming Distance, Small Set Intersection, Inner Product. How does performance degrade if players only share correlated variables: E.g. Alice ←𝑟; Bob ←𝑠. 𝑟,𝑠)= ( 𝑟 𝑖 , 𝑡 𝑖 𝑖 i.i.d. 𝑟 𝑖 , 𝑠 𝑖 ∈ −1,1 ; 𝔼 𝑟 𝑖 =𝔼 𝑠 𝑖 =0;𝔼 𝑟 𝑖 𝑠 𝑖 =𝜌∈(0,1); [CGMS ’16]: Comm. With perfect randomness = 𝑘 ⇒ Comm. With imperfect randomness = 𝑂 𝜌 ( 2 𝑘 ) August 17, 2017 Oberwolfach: Uncertain Communication

Imperfectly Shared Randomness Easy (Complete) Problem: Gap Inner Product: 𝑥,𝑦∈ ℝ 𝑛 𝐺𝐼 𝑃 𝑐,𝑠 𝑥,𝑦 =1 if 𝑥,𝑦 ≥𝜖⋅ 𝑥 2 ⋅ 𝑦 2 ; =0 if 𝑥,𝑦 ≤0 Decidable with 𝑂 𝜌 1 𝜖 2 (o.w.) communication Hard Problem: Sparse Gap Inner Product: 𝐺𝐼𝑃 on sparse 𝑥 𝑥∈ 0,1 𝑛 , 𝑦∈ −1,1 𝑛 ; 𝑥 1 =2𝜖𝑛 Classical communication = 𝑂 log 1 𝜖 [uses sparsity] No way to use sparsity with imperfect randomness. August 17, 2017 Oberwolfach: Uncertain Communication

3. Functional Uncertainty [Ghazi,Komargodski,Kothari,S. ‘16] Recall positive message of Yao’s model: Communication can be brief, if Alice knows what function 𝑓(𝑥,𝑦) Bob wants to compute. What if Alice only knows 𝑓 approximately? Can communication still be short? August 17, 2017 Oberwolfach: Uncertain Communication

Oberwolfach: Uncertain Communication The Model Recall Distributional Complexity: 𝑥,𝑦 ∼𝜇; error 𝜇 (Π)≝ Pr 𝑥,𝑦∼𝜇 𝑓 𝑥,𝑦 ≠Π 𝑥,𝑦 Complexity:𝑐 𝑐 𝜇, 𝜖 𝑓 ≝ min Π:𝑒𝑟𝑟𝑜 𝑟 𝜇 Π ≤𝜖 max 𝑥,𝑦 Π(𝑥,𝑦) Functional Uncertainty Model - I: Adversary picks 𝑓,𝑔 . Nature picks 𝑥,𝑦 ∼𝜇 Alice ←(𝑓,𝑥); Bob ←(𝑔,𝑦) ; Compute 𝑔(𝑥,𝑦) Promise: 𝛿 𝜇 𝑓,𝑔 ≝ Pr 𝜇 𝑓 𝑥,𝑦 ≠𝑔 𝑥,𝑦 ≤ 𝛿 0 Goal: Compute (any) Π 𝑥,𝑦 with 𝛿 𝜇 𝑔,Π ≤ 𝜖 1 (just want 𝜖 1 →0 as 𝛿 0 →0) If 𝑓,𝑔 part of input; this is complexity of what? August 17, 2017 Oberwolfach: Uncertain Communication

Modelling Uncertainty 𝑓 𝑔 𝒢 Modelled by graph 𝒢 of possible inputs Protocols know 𝒢 but not (𝑓,𝑔) 𝑐 𝑐 𝜇,𝜖 𝒢 ≝ max 𝑓,𝑔 ∈𝒢 𝑐 𝑐 𝜇,𝜖 𝑔 𝛿 𝜇 𝒢 ≝ max 𝑓,𝑔 ∈𝒢 𝛿 𝜇 (𝑓,𝑔) Uncertain error: 𝑒𝑟𝑟𝑜 𝑟 𝜇,𝒢 Π ≝ max 𝑓,𝑔 ∈𝒢 Pr 𝜇 𝑔 𝑥,𝑦 ≠Π(𝑓,𝑔,𝑥,𝑦) Uncertain complexity: 𝑈𝑐 𝑐 𝜇,𝜖 𝒢 ≝ min Π:error Π ≤𝜖 max 𝑓,𝑔,𝑥,𝑦 Π 𝑓,𝑔,𝑥,𝑦 Compare 𝑐 𝑐 𝜇, 𝜖 0 𝒢 vs. 𝑈𝑐 𝑐 𝜇, 𝜖 1 (𝒢) want 𝜖 1 →0 as 𝜖 0 , 𝛿 𝜇 𝒢 →0 August 17, 2017 Oberwolfach: Uncertain Communication

Main Results Thm 1: (-ve) ∃𝒢,𝜇 s.t. 𝛿 𝜇 𝒢 =𝑜 1 ;𝑐 𝑐 𝜇,𝑜(1) 𝒢 =1; but 𝑈𝑐 𝑐 𝜇,.1 𝒢 =Ω 𝑛 ; ( 𝑛= 𝑥 = 𝑦 ) Thm 2: (+ve) ∀𝒢, product 𝜇, 𝑈𝑐 𝑐 𝜇, 𝜖 1 𝑜𝑛𝑒𝑤𝑎𝑦 𝒢 =𝑂 𝑐 𝑐 𝜇, 𝜖 0 𝑜𝑛𝑒𝑤𝑎𝑦 𝒢 where 𝜖 1 →0 as 𝜖 0 , 𝛿 𝜇 𝒢 →0 Thm 2’: (+ve) ∀𝒢, 𝜇, 𝑈𝑐 𝑐 𝜇, 𝜖 1 𝑜𝑛𝑒𝑤𝑎𝑦 𝒢 =𝑂 𝑐 𝑐 𝜇, 𝜖 0 𝑜𝑛𝑒𝑤𝑎𝑦 𝒢 ⋅(1+𝐼 𝑥;𝑦 ) and 𝐼 𝑥;𝑦 = Mutual Information between 𝑥;𝑦 Protocols are not continuous wrt the function being computed August 17, 2017 Oberwolfach: Uncertain Communication

Details of Negative Result 𝜇: 𝑥∼𝑈 0,1 𝑛 ;𝑦=𝑁𝑜𝑖𝑠𝑦(𝑥) ; Pr 𝑥 𝑖 ≠ 𝑦 𝑖 =1/ 𝑛 ; 𝒢= ⊕ 𝑆 𝑥⊕𝑦 , ⊕ 𝑇 (𝑥⊕𝑦) | 𝑆⊕𝑇 =𝑜 𝑛 ⊕ 𝑆 𝑧 = ⊕ 𝑖∈𝑆 𝑧 𝑖 Certain Comm: Alice → Bob: ⊕ 𝑇 𝑥 𝛿 𝜇 𝒢 = max 𝑆,𝑇 Pr 𝑥,𝑦 ⊕ 𝑆 𝑥⊕𝑦 ≠ ⊕ 𝑇 𝑥⊕𝑦 = max 𝑈: 𝑈 =𝑜 𝑛 Pr 𝑧∼Bernoulli 1 𝑛 𝑛 ⊕ 𝑈 𝑧 =1 =𝑜(1) Uncertain Lower bound: Standard 𝑐 𝑐 𝜇,𝜖 𝐹 where 𝐹 𝑆,𝑥 ; 𝑇,𝑦 = ⊕ 𝑇 𝑥⊕𝑦 ; Lower bound obtain by picking 𝑆,𝑇 randomly: 𝑆 uniform; 𝑇 noisy copy of 𝑆 August 17, 2017 Oberwolfach: Uncertain Communication

Positive result (Thm. 2) 𝑦 1 𝑦 2 𝑦 𝑚 Consider comm. Matrix Protocol for 𝑔 partitions matrix in 2 𝑘 blocks Bob wants to know which block? Common randomness: 𝑦 1 ,…, 𝑦 𝑚 Alice → Bob: 𝑓 𝑥, 𝑦 1 …𝑓 𝑥, 𝑦 𝑚 Bob (whp) recognizes block and uses it. 𝑚=𝑂 𝑘 suffices. “CC preserved under uncertainty for one-way communication if 𝑥⊥𝑦” 𝑔(𝑥,𝑦) August 17, 2017 Oberwolfach: Uncertain Communication

Oberwolfach: Uncertain Communication Analysis Details W.p. 1 − 𝜖 , ∃𝑗 s.t. 𝛿 𝑔 𝑥 𝑗 ,⋅ ,𝑔 𝑥,⋅ ≤ 𝜖 Main idea: If Π 𝑔 𝑥 = Π 𝑔 𝑥 𝑗 then w.h.p. 𝛿 𝑔 𝑥 𝑗 ,⋅ ,𝑔 𝑥,⋅ ≤ 𝜖 If 𝑗∈ 𝐾 s.t. 𝛿 𝑔 𝑥 𝑗 ,⋅ , 𝑔 𝑥,⋅ ≥2 𝜖 then Pr 𝑗 is selected = exp(−𝑚). But Step 2. works only if 𝑦 𝑖 ∼ 𝜇 𝑥 August 17, 2017 Oberwolfach: Uncertain Communication

Oberwolfach: Uncertain Communication Thm 2’: Main Idea Now can not sample 𝑦 1 ,…, 𝑦 𝑚 independent of 𝑥 Instead use [HJMR’07] to sample 𝑦 𝑖 ∼ 𝜇 𝑥 Each sample costs 𝐼 𝑥;𝑦 Analysis goes through … August 17, 2017 Oberwolfach: Uncertain Communication

4. Contextual Proofs and Uncertainty? Scenario: Alice + Bob start with axioms 𝐴: subset of clauses on 𝑋 1 ,…, 𝑋 𝑛 Alice wishes to prove 𝐴⇒𝐶 for some clause 𝐶 But proof Π:𝐴⇒𝐶 may be long (~ 2 𝑛 ) Context to rescue: Maybe Alice + Bob share context 𝐷⇐𝐴 ; and contextual proof Π ′ :𝐷⇒𝐶 short (poly(𝑛)) Uncertainty: Alice’s Context 𝐷 𝐴 ≠ 𝐷 𝐵 (Bob’s context) Alice writes proof Π ′ : 𝐷 𝐴 ⇒𝐶 When can Bob verify Π′ given 𝐷 𝐵 ? August 17, 2017 Oberwolfach: Uncertain Communication

4. Contextual Proofs and Uncertainty? -2 Scenario: Alice + Bob start with axioms 𝐴: subset of clauses on 𝑋 1 ,…, 𝑋 𝑛 Alice wishes to prove 𝐴⇒𝐶 for some clause 𝐶 Alice writes proof Π ′ : 𝐷 𝐴 ⇒𝐶 When can Bob verify Π′ given 𝐷 𝐵 ? Surely if 𝐷 𝐴 ⊆ 𝐷 𝐵 What if 𝐷 𝐴 ∖ 𝐷 𝐵 = 𝐶′ and Π ′′ : 𝐷 𝐵 ⇒𝐶′ is one step long? Can Bob still verify Π′: 𝐷 𝐴 ⇒𝐶 in poly(𝑛) time? Need feasible data structure that allows this! None known to exist. Might be harder than Partial Match Retrieval … August 17, 2017 Oberwolfach: Uncertain Communication

Oberwolfach: Uncertain Communication Summarizing Perturbing “common information” assumptions in Shannon/Yao theory, lead to many changes. Some debilitating Some not; but require careful protocol choice. In general: Communication protocols are not continuous functions of the common information. Uncertain model (𝒢) needs more exploration! Some open questions from our work: Tighten the gap: 𝑐𝑐 𝑓 ⋅𝐼 vs. 𝑐𝑐 𝑓 + 𝐼 Multi-round setting? Two rounds? What if randomness & function imprefectly shared? [Prelim. Results in [Ghazi+S’17]] August 17, 2017 Oberwolfach: Uncertain Communication

Oberwolfach: Uncertain Communication Thank You! August 17, 2017 Oberwolfach: Uncertain Communication