Nonthermal distributions in the solar and stellar coronae

Slides:



Advertisements
Similar presentations
Thermal and nonthermal contributions to the solar flare X-ray flux B. Dennis & K. PhillipsNASA/GSFC, USA J. & B. SylwesterSRC, Poland R. Schwartz & K.
Advertisements

L. Teriaca, IMPRS Seminar, Lindau 08/12/04 Spectroscopy of the solar Transition Region and Corona L. Teriaca.
Cristina Chifor SESI Student Intern 2005 Solar Physics, Code 612 NASA/Goddard Space Flight Center Mentors: Dr. Ken Phillips & Dr. Brian Dennis FE AND FE/NI.
The synthetic emission spectra for the electron non-thermal distributions by using CHIANTI Elena Dzifčáková Department of Astronomy, Physics of the Earth.
Science With the Extreme-ultraviolet Spectrometer (EIS) on Solar-B by G. A. Doschek (with contributions from Harry Warren) presented at the STEREO/Solar-B.
Fitting X-ray Spectra with Imperfect Models Nancy S. Brickhouse Harvard-Smithsonian Center for Astrophysics Acknowledgments to Randall Smith and Adam Foster.
Non-Equilibrium Ionization Modeling of the Current Sheet in a Simulated Solar Eruption Chengcai Shen Co-authors: K. K. Reeves, J. C. Raymond, N. A. Murphy,
“The Role of Atomic Physics in Spectroscopic Studies of the Extended Solar Corona” – John Kohl “High Accuracy Atomic Physics in Astronomy”, August.
Super-Hot Thermal Plasmas in Solar Flares
Jaroslav Dudík 1,2 Elena Dzifčáková 3, Jonathan Cirtain 4 1 – DAMTP-CMS, University of Cambridge 2 – DAPEM, FMPhI, Comenius University, Bratislava, Slovakia.
X-Ray Observation and Analysis of a M1.7 Class Flare Courtney Peck Advisors: Jiong Qiu and Wenjuan Liu.
Characterizing Thermal and Non- Thermal Electron Populations in Solar Flares Using RHESSI Amir Caspi 1,2, Säm Krucker 2, Robert P. Lin 1,2 1 Department.
Probing Ion Acceleration by Observing Gamma Rays from Solar Flares Albert Y. Shih 1 NASA Advisor: Brian R. Dennis 2 Faculty Advisor: Robert P. Lin 1 1.
COOL STARS and ATOMIC PHYSICS Andrea Dupree Harvard-Smithsonian CfA 7 Aug High Accuracy Atomic Physics In Astronomy.
Measuring the Temperature of Hot Solar Flare Plasma with RHESSI Amir Caspi 1,2, Sam Krucker 2, Robert P. Lin 1,2 1 Department of Physics, University of.
The EUV spectral irradiance of the Sun from minimum to maximum Giulio Del Zanna Department of Space and Climate Physics University College London Vincenzo.
08__050610_SCIP/SEB_PSR_Delivery.1 Temperature and Density Diagnostics with SECCHI EUVI J.S. Newmark Naval Research Laboratory (202)
Distinguishing Between Thermal and Non-Thermal Electron Populations in Solar Flares Using RHESSI Amir Caspi 1,2, Robert P. Lin 1,2 1 Department of Physics,
Properties of Prominence Motions Observed in the UV T. A. Kucera (NASA/GSFC) E. Landi (Artep Inc, NRL)
Superhot DEM (or DF?) RHESSI continuum with TRACE or EIT FeXXIV, SUMER FeXXI, GOES, or whatever.
Hydrostatic modelling of active region EUV and X-ray emission J. Dudík 1, E. Dzifčáková 1,2, A. Kulinová 1,2, M. Karlický 2 1 – Dept. of Astronomy, Physics.
Spring School of Spectroscopic Data Analyses 8-12 April 2013 Astronomical Institute of the University of Wroclaw Wroclaw, Poland.
Zhang Ningxiao.  Emission of Tycho from Radio to γ-ray.  The γ-ray is mainly accelerated from hadronic processes.
Solar-B/EIS high-cadence observation for diagnostics of the corona and TR S. Kamio (Kyoto Univ.) Solar-B domestic meeting.
Modeling the Solar EUV irradiance
Variation of EUV solar irradiances along the cycle Vincenzo Andretta 1, Giulio Del Zanna 2, Seth Wieman 3 1 INAF – Osservatorio Astronomico di Capodimonte,
Thermal, Nonthermal, and Total Flare Energies Brian R. Dennis RHESSI Workshop Locarno, Switzerland 8 – 11 June, 2005.
Multiwavelength observations of a partially occulted solar flare Laura Bone, John C.Brown, Lyndsay Fletcher.
Modelling of the Effects of Return Current in Flares Michal Varady 1,2 1 Astronomical Institute of the Academy of Sciences of the Czech Republic 2 J.E.
Loop-top altitude decrease in an X-class flare A.M. Veronig 1, M. Karlický 2,B. Vršnak 3, M. Temmer 1, J. Magdalenić 3, B.R. Dennis 4, W. Otruba 5, W.
High Resolution Imaging and EUV spectroscopy for RHESSI Microflares S. Berkebile-Stoiser 1, P. Gömöry 1,2, J. Rybák 2, A.M. Veronig 1, M. Temmer 1, P.
The Influence of the Return Current and the Electron Beam on the X-Ray Flare Spectra Elena Dzifčáková, Marian Karlický Astronomical Institute of the Academy.
Solar Atmosphere A review based on paper: E. Avrett, et al. “Modeling the Chromosphere of a Sunspot and the Quiet Sun” and some others [Alexey V. Byalko]
The Influence of the Return Current and Electron Beam on the EUV and X-Ray Flare Emission E. Dzifčáková, M. Karlický Astronomical Institute of the Academy.
Diagnostics of non-thermal n-distribution Kulinová, A. AÚ AVČR, Ondřejov, ČR FMFI UK, Bratislava, SR.
Charge Exchange in Cygnus Loop R. S. Cumbee et al Satoru Katsuda et al Zhang Ningxiao.
Jelena Kovačević 1, Luka Č. Popović 1, Milan S. Dimitrijević 1, Payaswini Saikia 1 1 Astronomical Observatory Belgrade, Serbia.
EVE Sun-as-a-Star Spectra Milligan et al “Fe Cascade” for SOL
NON-THERMAL   DISTRIBUTIONS AND THE CORONAL EMISSION J. Dudík 1, A. Kulinová 1,2, E. Dzifčáková 1,2, M. Karlický 2 1 – OAA KAFZM FMFI, Univerzita Komenského,
Flare Differential Emission Measure from RESIK and RHESSI Spectra B. Sylwester, J. Sylwester, A. Kępa Space Research Centre, PAS, Wrocław, Poland T. Mrozek.
Characterizing Thermal and Non- Thermal Electron Populations in Solar Flares Using RHESSI Amir Caspi 1,2, Säm Krucker 2, Robert P. Lin 1,2 1 Department.
Calculation of the Irradiance variations in the UV and extreme UV Margit Haberreiter PMOD/WRC, Davos, Switzerland IPC XI Sept 26 – Oct 15, 2010.
The 2p-3d Electron Transition Multiplet of Ar +13 : A Stellar Density Diagnostic Laura Heeter Kristina Naranjo-Rivera
XUV monochromatic imaging spectroscopy in the SPIRIT experiment on the CORONAS-F mission I. Diagnostics of solar corona plasma by means of EUV Spectroheliograph.
The Suprathermal Tail Properties are not well understood; known contributors Heated solar wind Interstellar and inner source pickup ions Prior solar and.
Some EOVSA Science Issues Gregory Fleishman 26 April 2011.
Cycle 24 Meeting, Napa December 2008 Ryan Milligan NASA/GSFC Microflare Heating From RHESSI and Hinode Observations Ryan Milligan NASA-GSFC.
RHESSI and the Solar Flare X-ray Spectrum Ken Phillips Presentation at Wroclaw Workshop “ X-ray spectroscopy and plasma diagnostics from the RESIK, RHESSI.
Spectrogram 2-40 A for varying temperature. Spectra this is how we find out what everything is made of Vinay Kashyap Smithsonian Astrophysical Observatory.
Spectral signatures of dynamic plasmas  Many space missions over the past 30 yrs  A very dynamic Sun SoHO/EIT Hinode/SOT.
UCL DEPT. OF SPACE & CLIMATE PHYSICS SOLAR & STELLAR PHYSICS GROUP Atomic Data for Astrophysics VOTada VO Tools and Atomic Data for Astrophysics Giulio.
X-ray Spectroscopy of Coronal Plasmas Ken Phillips Scientific Associate, Natural History Museum, and Honorary Prof., QUB 1.
Netherlands Organisation for Scientific Research High resolution X-ray spectroscopy of the Interstellar Medium (ISM) C. Pinto (SRON), J. S. Kaastra (SRON),
Interstellar Turbulence and the Plasma Environment of the Heliosphere
Electron-impact excitation of Be-like Mg
Dong Li Purple Mountain Observatory, CAS
PIC code simulations of solar flare processes Astronomical Institute
Preliminary study for Soft X-ray Spectroscopy in VEST
Lukáš Shrbený, Pavel Spurný, Jiří Borovička
Progress Toward Measurements of Suprathermal Proton Seed Particle Populations J. Raymond, J. Kohl, A. Panasyuk, L. Gardner, and S. Cranmer Harvard-Smithsonian.
VI. Forecasting Solar EUV/UV Radiation – EUV spectral synthesis
Collisional lines: diagnostics & results
Relative abundances of quiet-time suprathermal ions at 1 AU
Atmospheres of Cool Stars
Chromospheric and Transition Region Dynamics
High-cadence Radio Observations of an EIT Wave
P. Heinzel Astronomical Institute, Czech Academy of Sciences
-Short Talk- The soft X-ray characteristics of solar flares, both with and without associated CMEs Kay H.R.M., Harra L.K., Matthews S.A., Culhane J.L.,
Simulations of the response of the Mars ionosphere to solar flares and solar energetic particle events Paul Withers EGU meeting Vienna,
Presentation transcript:

Nonthermal distributions in the solar and stellar coronae J. Dudík 1,2, E. Dzifčáková 2, M. Karlický 2, A. Kulinová 1,2 1 – DAPEM, Faculty of Mathematics, Physics and Informatics, Comenius University, Slovakia 2 – Astronomical Institute, Academy of Sciences of the Czech Republic Radiative (M)-HD Seminary, April 14th, 2011, Ondřejov

Outline I. The nonthermal distributions k–distributions n–distributions Why nonthermal distributions? Definition and basic properties, the pseudotemperature II. Radiative-loss function in solar and stelar coronae Contributions from lines and continuum Bremsstrahlung Contribution from individual elements or ions Consequences III. The nonthermal continuum Bremsstrahlung continuum in X-rays and radio Free-bound continuum and flare diagnostics

k-distributions: definition Owocki & Scudder (1983), Dzifčáková (2006a): k   Maxwellian distribution

Fe Ionization equilibrium Dzifčáková (2002): Changes in the Fe IX – XVI ionization equilibrium for the k-distributions with respect to Maxwellian one are significant:

k-distributions: why Study the emission – need to know about the microphysics Suprathermal component (“high-energy tail”) present during flares and also in solar wind Maksimovic et al. (1997): solar wind velocity distribution is better approximated by one k-distribution than with one or sum of two Maxwellians Collier (2004): if the mean particle energy is not held constant, the entropy is not maximalized by a Maxwellian, but by the k-distribution Tsallis (1988), Leubner et al. (2002, 2005, 2008) – non-extensive theory Dudík et al. (2009): considerable influence on the EUV filter responses Dzifčáková & Kulinová (2010, 2011) - k-distribution diagnosed in transition region spectra (Si III line ratios) and in flares (Fe XII line ratios) Their presence in AR corona is still an open question. Nevertheless...

Dzifčáková & Kulinová (2010) Solar Phys., 263, 25

n-distributions: definition Seely, Feldman & Doschek (1987), Dzifčáková & Tóthová (2007): n = 1 Maxwellian distribution Pseudo-temperature t :

n-distributions: why/when Consistent with X-Ray spectra observed with flares (Dzifčáková et al. 2008, A&A 488, 311; Kulinová et al., 2011, A&A, subm.)

The radiative losses II. Emissivity eij of a spectral line line – transition from the level i to level j in a k-times ionized element x is given by: FIP effect Radiative losses ER:

Synthetic line spectra Modification of CHIANTI, spectra for C,N,O,Ne,Mg,Al,Si,S,Ar,Ca,Fe,Ni

Nonthermal bremsstrahlung For Maxwellian distribution: For the k-distributions (Dudík et al., 2011, A&A, in press):

Atomic data errors

Bremsstrahlung spectrum III. Bremsstrahlung spectrum

Bremsstrahlung - spectrum

Freebound continuum

Freebound continuum

Conclusions Conditions in solar corona allow for non-thermal distributions. Their influence on the radiative losses is much higher than other effects Total radiative losses are lower for k-distributions,  lesser requirement for heating input higher for n-distributions  cooling processes for flares Crucial for theoretical modeling of the solar corona and flares Spectral synthesis for nonthermal distributions now complete  new diagnostic possibility for flare spectra

Ďakujem za pozornosť