Chapter 4: Network Layer

Slides:



Advertisements
Similar presentations
Network Layer4-1 Hierarchical Routing scale: with 200 million destinations: r can’t store all dest’s in routing tables! r routing table exchange would.
Advertisements

Lecture 9 Overview. Hierarchical Routing scale – with 200 million destinations – can’t store all dests in routing tables! – routing table exchange would.
Data Communications and Computer Networks Chapter 4 CS 3830 Lecture 22 Omar Meqdadi Department of Computer Science and Software Engineering University.
Chapter 4: Network Layer 4. 1 Introduction 4.2 Virtual circuit and datagram networks 4.3 What’s inside a router 4.4 IP: Internet Protocol –Datagram format.
4a-1 CSE401: Computer Networks Hierarchical Routing & Routing in Internet S. M. Hasibul Haque Lecturer Dept. of CSE, BUET.
Network Layer4-1 Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross Addison-Wesley,
Network Layer4-1 Chapter 4 roadmap 4.1 Introduction and Network Service Models 4.2 Routing Principles 4.3 Hierarchical Routing 4.4 The Internet (IP) Protocol.
Announcement r Project 3 out, due 3/10 r Homework 3 out last week m Due next Mon. 3/1.
Routing - II Important concepts: Hierarchical Routing, Intra-domain routing, inter- domain routing, RIP, OSPF, BGP, Router Architecture.
Spring Routing & Switching Umar Kalim Dept. of Communication Systems Engineering 04/05/2007.
14 – Inter/Intra-AS Routing
Routing in Wired Nets CS 215 W 01 - Mario Gerla. Routing Principles Routing: delivering a packet to its destination on the best possible path Routing.
Routing Algorithms & Routing Protocols  Shortest Path Routing  Flooding  Distance Vector Routing  Link State Routing  Hierarchical Routing  Broadcast.
1 ECE453 – Introduction to Computer Networks Lecture 10 – Network Layer (Routing II)
Transport Layer 3-1 Chapter 4 Network Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012  CPSC.
14 – Inter/Intra-AS Routing Network Layer Hierarchical Routing scale: with > 200 million destinations: can’t store all dest’s in routing tables!
CSC 450/550 Part 4: Network Layer Part B: The Internet Routing Protocols.
Lecture 14 ICMP: Internet Control Message Protocol r used by hosts, routers, gateways to communication network-level information m error reporting: unreachable.
Network Layer introduction 4.2 virtual circuit and datagram networks 4.3 what’s inside a router 4.4 IP: Internet Protocol  datagram format  IPv4.
Routing in the Internet The Global Internet consists of Autonomous Systems (AS) interconnected with eachother: Stub AS: small corporation Multihomed AS:
RSC Part II: Network Layer 6. Routing in the Internet (2 nd Part) Redes y Servicios de Comunicaciones Universidad Carlos III de Madrid These slides are,
Introduction 1 Lecture 19 Network Layer (Routing Protocols) slides are modified from J. Kurose & K. Ross University of Nevada – Reno Computer Science &
CS 3830 Day 29 Introduction 1-1. Announcements r Quiz 4 this Friday r Signup to demo prog4 (all group members must be present) r Written homework on chapter.
10-1 Last time □ Transitioning to IPv6 ♦ Tunneling ♦ Gateways □ Routing ♦ Graph abstraction ♦ Link-state routing Dijkstra's Algorithm ♦ Distance-vector.
Network Layer4-1 Chapter 4 roadmap 4.1 Introduction and Network Service Models 4.2 Routing Principles 4.3 Hierarchical Routing 4.4 The Internet (IP) Protocol.
Network Layer4-1 Chapter 4: Network Layer r 4. 1 Introduction r 4.2 Virtual circuit and datagram networks r 4.3 What’s inside a router r 4.4 IP: Internet.
Routing in the Internet The Global Internet consists of Autonomous Systems (AS) interconnected with eachother: Stub AS: small corporation Multihomed AS:
Network Layer r Introduction r Datagram networks r IP: Internet Protocol m Datagram format m IPv4 addressing m ICMP r What’s inside a router r Routing.
4: Network Layer4a-1 Routing in the Internet r The Global Internet consists of Autonomous Systems (AS) interconnected with each other: m Stub AS: small.
Network Layer4-1 Intra-AS Routing r Also known as Interior Gateway Protocols (IGP) r Most common Intra-AS routing protocols: m RIP: Routing Information.
TCOM 509 – Internet Protocols (TCP/IP) Lecture 06_a Routing Protocols: RIP, OSPF, BGP Instructor: Dr. Li-Chuan Chen Date: 10/06/2003 Based in part upon.
ICT 6621 : Advanced NetworkingKhaled Mahbub, IICT, BUET, 2008 Lecture 5 TCP/IP Network Layer (3)
Internet Protocols. ICMP ICMP – Internet Control Message Protocol Each ICMP message is encapsulated in an IP packet – Treated like any other datagram,
4: Network Layer4b-1 OSPF (Open Shortest Path First) r “open”: publicly available r Uses Link State algorithm m LS packet dissemination m Topology map.
Routing in the Inernet Outcomes: –What are routing protocols used for Intra-ASs Routing in the Internet? –The Working Principle of RIP and OSPF –What is.
Transport Layer3-1 Network Layer Every man dies. Not every man really lives.
Network Layer4-1 Routing Algorithm Classification Global or decentralized information? Global: r all routers have complete topology, link cost info r “link.
Network Layer4-1 Chapter 4: Network Layer r 4. 1 Introduction r 4.2 Virtual circuit and datagram networks r 4.3 What’s inside a router r 4.4 IP: Internet.
IP. Classless Inter-Domain Routing Classful addressing scheme wasteful – IP address space exhaustion – A class B net allocated enough for 65K hosts Even.
Network Layer4-1 Chapter 4: Network Layer r 4. 1 Introduction r 4.2 Virtual circuit and datagram networks r 4.3 What’s inside a router r 4.4 IP: Internet.
4: Network Layer4a-1 Distance Vector Routing Algorithm iterative: r continues until no nodes exchange info. r self-terminating: no “signal” to stop asynchronous:
Network Layer4-1 Chapter 4: Network Layer r 4. 1 Introduction r 4.2 Virtual circuit and datagram networks r 4.3 What’s inside a router r 4.4 IP: Internet.
Routing Protocols 1 ProtocolsLayer name DNSApplication TCP, UDPTransport IPInternet (Network ) WiFi, Ethernet Link (Physical)
Application Layer 2-1 Chapter 4 Network Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A.
Dynamic routing Routing Algorithm (Dijkstra / Bellman-Ford) – idealization All routers are identical Network is flat. Not true in Practice Hierarchical.
Routing in the Internet
14 – Inter/Intra-AS Routing
Homework 4 Out: Fri 2/24/2017 In: Fri 3/10/2017.
Chapter 4: Network Layer
NAT – Network Address Translation
Homework 4 Out: Fri 2/26/2016 In: Fri 3/11/2016.
ICMP ICMP – Internet Control Message Protocol
Chapter 4 Network Layer A note on the use of these ppt slides:
Chapter 5: Network Layer (Part III)
CS4470 Computer Networking Protocols
Hierarchical Routing Our routing study thus far – an idealization
Dynamic routing Routing Algorithm (Dijkstra / Bellman-Ford) – idealization All routers are identical Network is flat. Not true in Practice Hierarchical.
Routing.
Department of Computer and IT Engineering University of Kurdistan
Part 4: Network Layer Part B: The Internet Routing Protocols
Chapter 4: Network Layer
Chapter 4: Network Layer
Chapter 4: Network Layer
Chapter 4: Network Layer
Chapter 4: Network Layer
Routing.
Network Layer: Internet Inter-Domain Routing
Dynamic routing Routing Algorithm (Dijkstra / Bellman-Ford) – idealization All routers are identical Network is flat. Not true in Practice Hierarchical.
Chapter 4 Network Layer A note on the use of these ppt slides:
Presentation transcript:

Chapter 4: Network Layer 4. 1 Introduction 4.2 Virtual circuit and datagram networks 4.3 What’s inside a router 4.4 IP: Internet Protocol Datagram format IPv4 addressing ICMP IPv6 4.5 Routing algorithms Link state Distance Vector Hierarchical routing 4.6 Routing in the Internet RIP OSPF BGP 4.7 Broadcast and multicast routing Network Layer

Hierarchical Routing Our routing study thus far - idealization all routers identical network “flat” … not true in practice scale: with 200 million destinations: can’t store all dest’s in routing tables! routing table exchange would swamp links! administrative autonomy internet = network of networks each network admin may want to control routing in its own network Network Layer

Hierarchical Routing gateway routers aggregate routers into regions, “autonomous systems” (AS) routers in same AS run same routing protocol “intra-AS” routing protocol routers in different AS can run different intra-AS routing protocol special routers in AS run intra-AS routing protocol with all other routers in AS also responsible for routing to destinations outside AS run inter-AS routing protocol with other gateway routers Network Layer

Intra-AS and Inter-AS routing C.b Gateways: perform inter-AS routing amongst themselves perform intra-AS routers with other routers in their AS B.a A.a b A.c c a a C b a B d c A b network layer inter-AS, intra-AS routing in gateway A.c link layer physical layer Network Layer

Intra-AS and Inter-AS routing between A and B a b C A B d c A.a A.c C.b B.a Host h2 Host h1 Intra-AS routing within AS B Intra-AS routing within AS A We’ll examine specific inter-AS and intra-AS Internet routing protocols shortly Network Layer

Chapter 4: Network Layer 4. 1 Introduction 4.2 Virtual circuit and datagram networks 4.3 What’s inside a router 4.4 IP: Internet Protocol Datagram format IPv4 addressing ICMP IPv6 4.5 Routing algorithms Link state Distance Vector Hierarchical routing 4.6 Routing in the Internet RIP OSPF BGP 4.7 Broadcast and multicast routing Network Layer

Routing in the Internet The Global Internet consists of Autonomous Systems (AS) interconnected with each other: Stub AS: small corporation: one connection to other AS’s Multihomed AS: large corporation (no transit): multiple connections to other AS’s Transit AS: provider, hooking many AS’s together AS Lookup: https://www.ultratools.com/tools/asnInfo Two-level routing: Intra-AS: administrator responsible for choice of routing algorithm within network Inter-AS: unique standard for inter-AS routing: BGP Network Layer

Intra-AS Routing Also known as Interior Gateway Protocols (IGP) Most common Intra-AS routing protocols: RIP: Routing Information Protocol OSPF: Open Shortest Path First IGRP: Interior Gateway Routing Protocol (Cisco proprietary) Network Layer

Chapter 4: Network Layer 4. 1 Introduction 4.2 Virtual circuit and datagram networks 4.3 What’s inside a router 4.4 IP: Internet Protocol Datagram format IPv4 addressing ICMP IPv6 4.5 Routing algorithms Link state Distance Vector Hierarchical routing 4.6 Routing in the Internet RIP OSPF BGP 4.7 Broadcast and multicast routing Network Layer

RIP ( Routing Information Protocol) Distance vector algorithm Included in BSD-UNIX Distribution in 1982 Distance metric: # of hops (max = 15 hops) Can you guess why? Distance vectors: exchanged among neighbors every 30 sec via Response Message (also called advertisement) Each advertisement: list of up to 25 destination nets within AS Network Layer

RIP: Example z w x y A D B C y B 2 z B 7 x -- 1 Destination Network Next Router Num. of hops to dest. w A 2 y B 2 z B 7 x -- 1 …. …. .... Routing table in D Network Layer

RIP: Example w x y z A C D B y B 2 z B A 7 5 x -- 1 Advertisement Dest Next hops w - - x - - z C 4 …. … ... Advertisement from A to D w x y z A C D B Destination Network Next Router Num. of hops to dest. w A 2 y B 2 z B A 7 5 x -- 1 …. …. .... Routing table in D Network Layer

RIP: Link Failure and Recovery If no advertisement heard after 180 sec --> neighbor/link declared dead routes via neighbor invalidated new advertisements sent to neighbors neighbors in turn send out new advertisements (if tables changed) link failure info quickly propagates to entire net poison reverse used to prevent ping-pong loops (infinite distance = 16 hops) RIP is based on UDP packets Network Layer

Chapter 4: Network Layer 4. 1 Introduction 4.2 Virtual circuit and datagram networks 4.3 What’s inside a router 4.4 IP: Internet Protocol Datagram format IPv4 addressing ICMP IPv6 4.5 Routing algorithms Link state Distance Vector Hierarchical routing 4.6 Routing in the Internet RIP OSPF BGP 4.7 Broadcast and multicast routing Network Layer

OSPF (Open Shortest Path First) Successor to RIP Uses Link State algorithm LS packet dissemination Route computation using Dijkstra’s algorithm Advertisements disseminated to entire AS (via flooding) Carried in OSPF messages directly over IP (no TCP or UDP) ICMP is directly on IP, too Network Layer

OSPF “advanced” features (not in RIP) Security: all OSPF messages authenticated (to prevent malicious intrusion) Multiple same-cost paths allowed (only one path in RIP) Hierarchical OSPF in large domains. Network Layer

Chapter 4: Network Layer 4. 1 Introduction 4.2 Virtual circuit and datagram networks 4.3 What’s inside a router 4.4 IP: Internet Protocol Datagram format IPv4 addressing ICMP IPv6 4.5 Routing algorithms Link state Distance Vector Hierarchical routing 4.6 Routing in the Internet RIP OSPF BGP 4.7 Broadcast and multicast routing Network Layer

Inter-AS routing in the Internet: BGP Network Layer

Internet inter-AS routing: BGP BGP (Border Gateway Protocol): the de facto standard for inter-AS routing BGP: glues the whole Internet together Uses TCP (service port: 179) Path Vector protocol: similar to Distance Vector protocol each Border Gateway broadcast to neighbors (peers) entire path (i.e., sequence of AS’s) to destination BGP routes to networks (ASs), not individual hosts E.g., Gateway X may send its path to dest. Z: Path (X,Z) = X,Y1,Y2,Y3,…,Z Network Layer

Internet inter-AS routing: BGP Suppose: gateway X send its path to peer gateway W W may or may not select path offered by X cost, policy (don’t route via competitors AS), loop prevention reasons If W selects path advertised by X, then: Path (W,Z) = w, Path (X,Z) Note: X can control incoming traffic by controlling its route advertisements to peers: e.g., don’t want to route traffic to Z -> don’t advertise any routes to Z Network Layer

BGP: controlling who routes to you A,B,C are provider networks X,W,Y are customer (of provider networks) X is dual-homed: attached to two networks X does not want to route from B via X to C .. so X will not advertise to B a route to C Network Layer

BGP: controlling who routes to you A advertises to B the path AW B advertises to X the path BAW Should B advertise to C the path BAW? No way! B gets no “revenue” for routing CBAW since neither W nor C are B’s customers B wants to force C to route to w via A B wants to route only to/from its customers! Policy !! Network Layer

BGP messages BGP messages exchanged using TCP. BGP messages: OPEN: opens TCP connection to peer and authenticates sender UPDATE: advertises new path (or withdraws old) KEEPALIVE keeps connection alive in absence of UPDATES; also ACKs OPEN request NOTIFICATION: reports errors in previous msg; also used to close connection Network Layer

Why different Intra- and Inter-AS routing ? Policy: Inter-AS: admin wants control over how its traffic routed, who routes through its net (policy). Intra-AS: single admin, so no policy decisions needed Scale: hierarchical routing saves table size, reduced update traffic Performance: Intra-AS: can focus on performance Inter-AS: policy may dominate over performance Network Layer

Network Layer: summary What we’ve covered: network layer services routing principles: link state and distance vector Hierarchical routing IP Internet routing protocols RIP, OSPF, BGP what’s inside a router? IPv6 Next stop: the Data link layer! Network Layer