The Electromagnetic calorimeter of the MEG Experiment

Slides:



Advertisements
Similar presentations
Prototype of the Daya Bay Neutrino Detector Wang Zhimin IHEP, Daya Bay.
Advertisements

S. Bricola, A. Menegolli, M. Prata, M.C. Prata, G.L. Raselli, M. Rossella, C. Vignoli INFN and University of Pavia - Via Bassi, 6 – Pavia – Italy.
Liquid Xenon Carlorimetry at the MEG Experiment Satoshi MIHARA Univ. of Tokyo.
XEC Hardware Status MEG Review Meeting 2010 Liquid Xenon Group.
Yasuhiro NISHIMURA Hiroaki NATORI The University of Tokyo MEG collaboration Outline  → e  and MEG experiment Design of detector Calibration Performance.
Upgrade of liquid xenon gamma-ray detector in MEG experiment Daisuke Kaneko, the University of Tokyo, on behalf of the MEG collaboration MEG EXPERIMENT.
Wataru Ootani, ICEPP, Univ. of Tokyo SORMA X, May 21, 2002 Development of liquid xenon scintillation detector for new experiment to search for   e 
Hamamatsu R7525 HA: outer conductive coating with insulating sleeve CC: convex-concave window mm thick (standard plano-concave: 1mm center, 6.1.
Satoshi Mihara ICEPP, Univ. of Tokyo Feb MEG Review Meeting 1 CEX beam test at piE1 Satoshi Mihara.
Liquid Xenon Photon Detector Feb MEG Review Meeting Liquid Xenon Detector Part I CEX beam test at piE1 Oct-Dec/03 –Hardware operation status –Analysis.
1 Performance of multi-anode PMT employing an ultra bi-alkali photo-cathode and rugged dynodes Takahiro Toizumi Tokyo Institute of Technology S. Inagwa.
ZEPLIN II Status & ZEPLIN IV Muzaffer Atac David Cline Youngho Seo Franco Sergiampietri Hanguo Wang ULCA ZonEd Proportional scintillation in LIquid Noble.
14/02/2007 Paolo Walter Cattaneo 1 1.Trigger analysis 2.Muon rate 3.Q distribution 4.Baseline 5.Pulse shape 6.Z measurement 7.Att measurement OUTLINE.
Analysis of PSI beam test R.Sawada 09/Feb/2004 MEG collaboration R.Sawada 09/Feb/2004 MEG collaboration
MEG positron spectrometer Oleg Kiselev, PSI on behalf of MEG collaboration.
Scintillation hodoscope with SiPM readout for the CLAS detector S. Stepanyan (JLAB) IEEE conference, Dresden, October 21, 2008.
19 April 2006Fabrizio Cei1 The Liquid Xenon Calorimeter of the MEG Experiment Fabrizio Cei INFN and Universita’ di Pisa Incontri di Fisica delle Alte Energie.
1 1.  - ray production by the reactions Li(p,  )Be and B(p,  )C tested at the Legnaro INFN Laboratory 2.Monte Carlo simulation of point-like Americium.
MEG 2009 現状と展望 東京大学素粒子物理国際研究センター 岩本敏幸 他 MEG コラボレーション 日本物理学会 2009 年秋季大会 甲南大学岡本キャンパス.
MEG 実験用液体キセノン検出器の現状 東京大学素粒子物理国際研究センター 澤田龍 他 MEG カロリメータグループ 2007 年 9 月 24 日 日本物理学会 第 62 回年次大会 北海道大学.
Lead Fluoride Calorimeter for Deeply Virtual Compton Scattering in Hall A Alexandre Camsonne Hall A Jefferson Laboratory October 31 st 2008.
1 Satoshi Mihara for the   e  collaboration, review meeting at PSI, Jul 2002 Photon Detector Satoshi Mihara ICEPP, Univ. of Tokyo 1.Large Prototype.
Dec. 8th, 2000NOON A new   e  experiment at PSI For the MUEGAMMA collaboration Stefan Ritt (Paul Scherrer Institute, Switzerland) Introduction.
Calibration and monitoring of the experiment using the Cockcroft-Walton accelerator G. Signorelli Sezione di Pisa MEG Review meeting - 20 Feb On.
MEG Run 2008 液体キセノンガンマ線検出器 東京大学 素粒子物理国際研究セン ター 西村 康宏、 他 MEG コラボレー ション 2008 年秋季物理学会@山形大学小白川キャンパス.
The NA62 rare kaon decay experiment Photon Veto System Vito Palladino for NA62 Coll.
I. Giomataris NOSTOS a new low energy neutrino experiment Detect low energy neutrinos from a tritium source using a spherical gaseous TPC Study neutrino.
1 NaI calibrationneutron observation NaI calibration and neutron observation during the charge exchange experiment 1.Improving the NaI energy resolution.
Possible calibration methods for the final LXe calorimeter A. Papa 02/11/
FSC Status and Plans Pavel Semenov IHEP, Protvino on behalf of the IHEP PANDA group PANDA Russia workshop, ITEP 27 April 2010.
Liquid Xe detector for m +  e + g search Kenji Ozone ( ICEPP, Univ. of Tokyo, Japan ) Introduction prototype R&D ー PMTs ー small & large type summary Outline.
Detectors for VEPP-2000 B.Khazin Budker Institute of Nuclear Physics 2 March 2006.
R&D works on Liquid Xenon Photon Detector for μ  e γ experiment at PSI Satoshi Mihara ICEPP, Univ. of Tokyo Outline Introduction Prototype R&D works Summary.
MEG 実験 2009 液体キセノン検出器の性能 II 西村康宏, 他 MEG コラボレーション 東京大学素粒子物理国際研究セン ター 第 65 回年次大会 岡山大学.
Upgrade of the MEG liquid xenon calorimeter with VUV-light sensitive large area SiPMs Kei Ieki for the MEG-II collaboration 1 II.
Prototypes photon veto detectors for NA62 experiment CERN M. Raggi - INFN/Frascati for the NA62 Photon Veto Working Group LNF, RM1, NA, PI, SOFIA First.
Performance of 1600-pixel MPPC for the GLD Calorimeter Readout Jan. 30(Tue.) Korea-Japan Joint Shinshu Univ. Takashi Maeda ( Univ. of Tsukuba)
The Status of Hyperball-J Akio Sasaki Dept. of Phys. Tohoku Univ. 23/9/2011.
g beam test of the Liquid Xe calorimeter for the MEG experiment
Xiong Zuo IHEP, CAS, for the LHAASO Collaboration
The MiniBooNE Little Muon Counter Detector
Scintillation Detectors in High Energy Physics
Scintillation Detectors
Cecilia Voena INFN Roma on behalf of the MEG collaboration
Liquid Xenon Detector for the MEG Experiment
New experiment to search for mge g at PSI status and prospects
大強度
PAN-2013: Radiation detectors
MEG Experiment at PSI R&D of Liquid Xenon Photon Detector
Upgrade of LXe gamma-ray detector in MEG experiment
Upgrade of LXe gamma-ray detector in MEG experiment
Upgrade of LXe gamma-ray detector in MEG experiment
On behalf of the GECAM group
Upgrade of LXe gamma-ray detector in MEG experiment
Timing Counter Sept CSN I, Assisi 2004 Giorgio Cecchet.
Upgrade of LXe gamma-ray detector in MEG experiment
MEG実験アップグレードに向けたSiPMを用いた ポジトロン時間測定器の研究開発
Tadashi Nomura (Kyoto U), KRare05 at Frascati, Italy
MEG実験の液体Xe検出器について 東大 ICEPP  森研究室 M1 金子大輔.
Stefan Ritt Paul Scherrer Institute, Switzerland
MEG II実験 液体キセノン検出器の建設状況
Daisuke Kaneko, ICEPP, Univ. of Tokyo on behalf of MEG collaboration
MEG Summary T. Mori for MEG Collaboration February 9, 2005.
Xenon Detector Hardware
Xiong Zuo IHEP, CAS, for the LHAASO Collaboration
PERFORMANCE OF THE METAL RADIATION MONITORING SYSTEMS
Trigger operation during 2007 run
Decay Angular Measurement in the MEG Experiment
New Results from the MEG Experiment
Presentation transcript:

The Electromagnetic calorimeter of the MEG Experiment XIII International Conference on Calorimetry in High Energy Physics Pavia Italy, 26-30 May 2008 G. Gallucci, INFN Pisa

MEG Experiment sensitivity  10-13 @ 90% CL Reserch of rare muon decay m -> e + g with lepton flavour violation at Paul Scherrer Institut (Villigen, Switzerland) In the Standard Model BR(m -> e + g ) = 0 Leptonic flavour and number conservation Neutrino oscillation SUSYGUT theories SUSY SU(5) BR  10-14  10-13 SUSY SO(10) BR  10-12 10-11 BR (m -> e + g)  10-55 Impossible to measure MEG Experiment sensitivity  10-13 @ 90% CL

Event Signature and background Accidental contribution more important than correlated one A very good electromagnetic calorimeter y = Eg / mm x = Ee/ mm Bacc  Rm dx (dy)2 dw2eg dteg (ln(dy) + 7.33 )

Photon detector: calorimeter (1) Operated for 2 Months in 2007

Photon detector: calorimeter (2) Refrigerator 800 liters of Liquid Xenon (the biggest Xenon calorimeter in the world) External structure made in steel except front part in alluminum honeycomb and carbon fibers Internal PMTs supported structure made in alluminum and plastic (peek) for inner face 846 PMTs installed with photocatodic coverage  30% Solid angle coverage  10% HV Signals Cooling pipe Vacuum for thermal insulation Al Honeycomb window

Scintillation process: Liquid Xenon Density 2.95 g/cm3 Liquefaction temperature 165 °K Energy per scintillation photon 19.6 eV, 23.6 eV Radiative length 2.77 cm Decay time 4.2, 22, 45 nanosecond Wavelenght of emission peak 175 nanometer Rayleigh diffusion  40 cm Refractive index (on emission peak) 1.56 Scintillation process: 1) Xe* + Xe  Xe2*  2 Xe + hn 2) Xe+ + Xe  Xe2+ Xe2+ + e  Xe + Xe** Xe**  Xe* + heat  1) Ultraviolet scintillation light Absorpiotn lenght from H2O and O2 High number of scintillation photons ( 40k g/MeV) Fast time response High density, compact detector

Average Quantum efficiency PMTs R9869 Hamamatsu Photocatodic surface 96% K - Cs – Sb , 4% Al to reduce Photocatodic impedence at low temperature Compact structure with 12 amplification stages in order to operate into a low magnetic field Last two stages have a Zener dyode to stabilyze Voltage Average Quantum efficiency 15 %

Cryogenic tools Detector Gas phase-purifier High pressure storage LXe storage tank Liquid phase-purifier

Data Acquisition System Each PMT read from 2 types of waveform digitizer to reject pile-up and to subtract pedestal Trigger  100 MHz DRS  2 GHz Gamma Ray g g Alpha particle a a

Runs with different Led amplitude to compute PMTs gains (Nphe~1/s2). Leds and PMTs gains In order to monitor the calorimeter stability and response, Pmts characteristics (gains and QE): There are 36 leds mounted in 12 different positions with different attenuations. Runs with different Led amplitude to compute PMTs gains (Nphe~1/s2).

Alpha, QE and Absorption lenght 25 alpha sources 241Am on 5 wires. Absorption lenght evaluation Ratio Data/MC vs distance fitted with an exponential curve. Quantum Efficiency Evaluation in cold gas or Liquid Wire thickness  50 mm Alpha average path  40 mm Shadow effect (Rings) l > 3 m @95 % C.L.

Cockroft-Walton Accelerator Reaction Peak energy s peak g-lines Li(p,)Be 440 keV 5 mb (17.6, 14.6) MeV >16.1 MeV >11.7 MeV 4.4 MeV sE = 3.6 %

Charge exchange reaction p- + p  p0 + n p0 Decay p0  g + g m(p0)  135 MeV/c2 p(p0)  2.9 MeV/c 54.9 MeV < Eg < 83.9 MeV A p- beam against a LH2 target NaI Crystals “grid” It is possible to move tha NaI in different positions around f angle

Spectra of photons from muon radiative decay Red = computed from theory Preliminary Blue = measured from Michel runs Pile-up Preliminary Integrated spectra

Energy Resolution and Linearity Gamma Linearity Energy resolution on 54.9 MeV 52.8 MeV CW Measured in 0 runs Risolutions (FWHM) Gamma Energy (on 55 MeV) 4.8 % Gamma Position (mm) 15.0 Gamma Time (nanosec) 0.15

Position and Time Resolution s=64 psec Position Resolution (FWHM) Gp  15 millimeters Using Pb collimator holes and edges

Conclusions The Calorimeter performances are suitable for MEG experiment goals. The detector is now in the purification phase till the first week of June. After the purification, we will start to take physics data.