Halliday/Resnick/Walker Fundamentals of Physics 8th edition

Slides:



Advertisements
Similar presentations
©1997 by Eric Mazur Published by Pearson Prentice Hall Upper Saddle River, NJ ISBN No portion of the file may be distributed, transmitted.
Advertisements

Which of the following is the best description of the dot product ? Dot Product.
AP Physics C I.C Work, Energy and Power. Amazingly, energy was not incorporated into physics until more than 100 years after Newton.
One-Dimensional Motion in the Vertical Direction (y – axis) or Freely Falling Bodies Montwood High School Physics R. Casao.
AP Physics B Summer Course 年AP物理B暑假班
Work, Energy, And Power m Honors Physics Lecture Notes.
Cutnell/Johnson Physics 7th edition
PHY101 Quiz #2, 2012.
Chapter 9 Potential Energy & Conservation of Energy
Conservation of Energy
ENERGY LCHS Dr.E.
Fall Final Review WKS: WORD PROBLEMS. Average Speed 1. A rock is dropped from the top of a tall cliff 9 meters above the ground. The ball falls freely.
Unit 1-3 Review 1. Mass = 4 kg, acceleration = 5m/s 2 → Find the weight - F g (N) 2 F t = 50N.
Halliday/Resnick/Walker Fundamentals of Physics
Conservation of Energy Energy is Conserved!. The total energy (in all forms) in a “closed” system remains constant The total energy (in all forms) in.
Dynamics and transportation 1) Review of work, energy; 2) PRS questions on work; 2) Introduction to transportation.
Physics 151: Lecture 15, Pg 1 Today’s Topics l Potential Energy, Ch. 8-1 l Conservative Forces, Ch. 8-2 l Conservation of mechanical energy Ch.8-4.
PHYSICS 231 INTRODUCTORY PHYSICS I
T101Q7. A spring is compressed a distance of h = 9.80 cm from its relaxed position and a 2.00 kg block is put on top of it (Figure 3). What is the maximum.
Halliday/Resnick/Walker Fundamentals of Physics
Chapter 5 Work and Energy
Bellringer 10/25 A 95 kg clock initially at rest on a horizontal floor requires a 650 N horizontal force to set it in motion. After the clock is in motion,
Halliday/Resnick/Walker Fundamentals of Physics 8th edition
Velocity is to speed as displacement is to (A) acceleration
The Law of Conservation of Energy states: Conservation of Energy Energy cannot be created or destroyed Energy can be transformed from one form to another.
Work done by individual forces
Potential Energy and Conservative Forces
Energy m m Physics 2053 Lecture Notes Energy.
S-29 This cat is not happy. He is in need of a hair dryer. List five sources of energy that might be able to produce electricity for him.
Chapter 8 - Potential Energy and Conservation of Energy Conservative vs. Non-conservative Forces Definition of Potential Energy Conservation Of Mechanical.
Work and Energy. Work a force that causes a displacement of an object does work on the object W = Fdnewtons times meters (N·m) or joules (J)
Click on one of the following icons to go to that resource.
Chapter 6 Work and Energy.
Reading Quiz - Work & Energy
Work and Energy.
Fall Semester Review: Physics Situation 1: Air resistance is ignored. A person is standing on a bridge that is 150 m above a river. a. If a stone with.
Lecture 11: Potential Energy & Energy Conservation.
Conservation of Energy
Conservation of Energy System Energy of Gravitational Interaction -- Gravitational Potential Energy If the system contains Earth and an object (or objects),
Work and Energy x Work and Energy 06.
Cutnell/Johnson Physics 8th edition Reading Quiz Questions
Potential Energy and Conservation of Energy
AP Physics Semester Review 26 is torque
Potential and Kinetic Energy How is all energy divided? Potential Energy Kinetic Energy All Energy Gravitation Potential Energy Elastic Potential Energy.
Work and Energy Problems A force F of strength 20N acts on an object of mass 3kg as it moves a distance of 4m. If F is perpendicular to the 4m displacement,
Chapter 9 Energy.
Chapter 5 Work and Energy. Question A crate of mass 10 kg is on a ramp that is inclined at an angle of 30⁰ from the horizontal. A force with a magnitude.
Copyright © 2010 Pearson Education, Inc. Lecture Outline Chapter 8 Physics, 4 th Edition James S. Walker.
Cutnell/Johnson Physics 8 th edition Classroom Response System Questions Chapter 6 Work and Energy Interactive Lecture Questions.
Chapter 6 Work and Energy © 2014 Pearson Education, Inc. No need to write information in red.
Work & Energy Review.
Which graph represents the motion of a ball rolling on a level friction free track? Which graph represents the motion of a ball rolling down a ramp?
Midterm 1 Review Chapters 1-5
Work and Energy.
List five sources of energy that might be able to produce
Chapter 7 Work and Energy
DYNAMICS 1. Newton’s Three Laws Newton’s First Law Newton’s Second Law
Conservation of Energy
General Physics 101 PHYS Dr. Zyad Ahmed Tawfik
Unit 7: Work, Power, and Mechanical Energy.
Today: Work, Kinetic Energy, Potential Energy
Conservation Laws Work and Conservation of Energy
AP Physics Review Created by Educational Technology Network
Which graph represents the motion of a ball rolling on a level friction free track? Which graph represents the motion of a ball rolling down a ramp?
Aim: How do we explain conservation of energy?
Work & Energy.
What do we want to do today?! Sunday:
©1997 by Eric Mazur Published by Pearson Prentice Hall
Work, Energy, Power.
Uniform Acceleration Review
Presentation transcript:

Halliday/Resnick/Walker Fundamentals of Physics 8th edition Classroom Response System Questions Chapter 8 Potential Energy and Conservation of Energy Interactive Lecture Questions

8.4.1. A donkey pulls a crate up a rough, inclined plane at constant speed. Which one of the following statements concerning this situation is false? a) The gravitational potential energy of the crate is increasing. b) The net work done by all the forces acting on the crate is zero joules. c) The work done on the crate by the normal force of the plane is zero joules. d) The donkey does "positive" work in pulling the crate up the incline. e) The work done on the object by gravity is zero joules.

8.4.1. A donkey pulls a crate up a rough, inclined plane at constant speed. Which one of the following statements concerning this situation is false? a) The gravitational potential energy of the crate is increasing. b) The net work done by all the forces acting on the crate is zero joules. c) The work done on the crate by the normal force of the plane is zero joules. d) The donkey does "positive" work in pulling the crate up the incline. e) The work done on the object by gravity is zero joules.

8. 4. 2. Larry’s gravitational potential energy is 1870 J as he sits 2 8.4.2. Larry’s gravitational potential energy is 1870 J as he sits 2.20 m above the ground in a sky diving airplane. What is his gravitational potential energy when be begins to jump from the airplane at an altitude of 923 m? a) 3.29  104 J b) 9.36  102 J c) 4.22  106 J d) 1.87  103 J e) 7.85  105 J

8. 4. 2. Larry’s gravitational potential energy is 1870 J as he sits 2 8.4.2. Larry’s gravitational potential energy is 1870 J as he sits 2.20 m above the ground in a sky diving airplane. What is his gravitational potential energy when be begins to jump from the airplane at an altitude of 923 m? a) 3.29  104 J b) 9.36  102 J c) 4.22  106 J d) 1.87  103 J e) 7.85  105 J

8.4.3. A mountain climber pulls a supply pack up the side of a mountain at constant speed. Which one of the following statements concerning this situation is false? a) The net work done by all the forces acting on the pack is zero joules. b) The work done on the pack by the normal force of the mountain is zero joules. c) The work done on the pack by gravity is zero joules. d) The gravitational potential energy of the pack is increasing. e) The climber does "positive" work in pulling the pack up the mountain.

8.4.3. A mountain climber pulls a supply pack up the side of a mountain at constant speed. Which one of the following statements concerning this situation is false? a) The net work done by all the forces acting on the pack is zero joules. b) The work done on the pack by the normal force of the mountain is zero joules. c) The work done on the pack by gravity is zero joules. d) The gravitational potential energy of the pack is increasing. e) The climber does "positive" work in pulling the pack up the mountain.

8.5.1. After an ice storm, ice falls from one of the top floors of a 65-story building. The ice falls freely under the influence of gravity. Which one of the following statements concerning this situation is true? Ignore any effects due to non-conservative forces. a) The kinetic energy of the ice increases by equal amounts for equal distances. b) The kinetic energy of the ice increases by equal amounts for equal times. c) The potential energy of the ices decreases by equal amounts for equal times. d) The total energy of the block increases by equal amounts over equal distances. e) As the block falls, the net work done by all of the forces acting on the ice is zero joules.

8.5.1. After an ice storm, ice falls from one of the top floors of a 65-story building. The ice falls freely under the influence of gravity. Which one of the following statements concerning this situation is true? Ignore any effects due to non-conservative forces. a) The kinetic energy of the ice increases by equal amounts for equal distances. b) The kinetic energy of the ice increases by equal amounts for equal times. c) The potential energy of the ices decreases by equal amounts for equal times. d) The total energy of the block increases by equal amounts over equal distances. e) As the block falls, the net work done by all of the forces acting on the ice is zero joules.

8.5.2. Two balls of equal size are dropped from the same height from the roof of a building. One ball has twice the mass of the other. When the balls reach the ground, how do the kinetic energies of the two balls compare? a) The lighter one has one fourth as much kinetic energy as the other does. b) The lighter one has one half as much kinetic energy as the other does. c) The lighter one has the same kinetic energy as the other does. d) The lighter one has twice as much kinetic energy as the other does. e) The lighter one has four times as much kinetic energy as the other does.

8.5.2. Two balls of equal size are dropped from the same height from the roof of a building. One ball has twice the mass of the other. When the balls reach the ground, how do the kinetic energies of the two balls compare? a) The lighter one has one fourth as much kinetic energy as the other does. b) The lighter one has one half as much kinetic energy as the other does. c) The lighter one has the same kinetic energy as the other does. d) The lighter one has twice as much kinetic energy as the other does. e) The lighter one has four times as much kinetic energy as the other does.

8. 5. 3. Determine the amount of work done in firing a 2 8.5.3. Determine the amount of work done in firing a 2.0-kg projectile with an initial speed of 50 m/s. Neglect any effects due to air resistance. a) 900 J b) 1600 J c) 2500 J d) 4900 J e) This cannot be determined without knowing the launch angle.

8. 5. 3. Determine the amount of work done in firing a 2 8.5.3. Determine the amount of work done in firing a 2.0-kg projectile with an initial speed of 50 m/s. Neglect any effects due to air resistance. a) 900 J b) 1600 J c) 2500 J d) 4900 J e) This cannot be determined without knowing the launch angle.

8.5.4. A roller coaster car travels down a hill and is moving at 18 m/s as it passes through a section of straight, horizontal track. The car then travels up another hill that has a maximum height of 15 m. If frictional effects are ignored, determine whether the car can reach the top of the hill. If it does reach the top, what is the speed of the car at the top? a) No, the car doesn’t make it up the hill. It is going too slow. b) Yes, the car just barely makes it to the top and stops. The final speed is zero m/s. c) Yes, the car not only makes it to the top, but it is moving at 5.4 m/s. d) Yes, the car not only makes it to the top, but it is moving at 9.0 m/s. e) Yes, the car not only makes it to the top, but it is moving at 18 m/s.

8.5.4. A roller coaster car travels down a hill and is moving at 18 m/s as it passes through a section of straight, horizontal track. The car then travels up another hill that has a maximum height of 15 m. If frictional effects are ignored, determine whether the car can reach the top of the hill. If it does reach the top, what is the speed of the car at the top? a) No, the car doesn’t make it up the hill. It is going too slow. b) Yes, the car just barely makes it to the top and stops. The final speed is zero m/s. c) Yes, the car not only makes it to the top, but it is moving at 5.4 m/s. d) Yes, the car not only makes it to the top, but it is moving at 9.0 m/s. e) Yes, the car not only makes it to the top, but it is moving at 18 m/s.

8. 5. 5. You are investigating the safety of a playground slide 8.5.5. You are investigating the safety of a playground slide. You are interested in finding out what the maximum speed will be of children sliding on it when the conditions make it very slippery (assume frictionless). The height of the slide is 2.5 m. What is that maximum speed of a child if she starts from rest at the top? a) 1.9 m/s b) 2.5 m/s c) 4.9 m/s d) 7.0 m/s e) 9.8 m/s

8. 5. 5. You are investigating the safety of a playground slide 8.5.5. You are investigating the safety of a playground slide. You are interested in finding out what the maximum speed will be of children sliding on it when the conditions make it very slippery (assume frictionless). The height of the slide is 2.5 m. What is that maximum speed of a child if she starts from rest at the top? a) 1.9 m/s b) 2.5 m/s c) 4.9 m/s d) 7.0 m/s e) 9.8 m/s

8.5.6. A quarter is dropped from rest from the fifth floor of a very tall building. The speed of the quarter is v just before striking the ground. From what floor would the quarter have to be dropped from rest for the speed just before striking the ground to be approximately 2v? Ignore all air resistance effects to determine your answer. a) 14 b) 25 c) 20 d) 7 e) 10

8.5.6. A quarter is dropped from rest from the fifth floor of a very tall building. The speed of the quarter is v just before striking the ground. From what floor would the quarter have to be dropped from rest for the speed just before striking the ground to be approximately 2v? Ignore all air resistance effects to determine your answer. a) 14 b) 25 c) 20 d) 7 e) 10

8.5.7. Two identical balls are thrown from the same height from the roof of a building. One ball is thrown upward with an initial speed v. The second ball is thrown downward with the same initial speed v. When the balls reach the ground, how do the kinetic energies of the two balls compare? Ignore any air resistance effects. a) The kinetic energies of the two balls will be the same. b) The first ball will have twice the kinetic energy as the second ball. c) The first ball will have one half the kinetic energy as the second ball. d) The first ball will have four times the kinetic energy as the second ball. e) The first ball will have three times the kinetic energy as the second ball.

8.5.7. Two identical balls are thrown from the same height from the roof of a building. One ball is thrown upward with an initial speed v. The second ball is thrown downward with the same initial speed v. When the balls reach the ground, how do the kinetic energies of the two balls compare? Ignore any air resistance effects. a) The kinetic energies of the two balls will be the same. b) The first ball will have twice the kinetic energy as the second ball. c) The first ball will have one half the kinetic energy as the second ball. d) The first ball will have four times the kinetic energy as the second ball. e) The first ball will have three times the kinetic energy as the second ball.

8.7.1. A car is being driven along a country road on a dark and rainy night at a speed of 20 m/s. The section of road is horizontal and straight. The driver sees that a tree has fallen and covered the road ahead. Panicking, the driver locks the brakes at a distance of 20 m from the tree. If the coefficient of friction between the wheels and road is 0.8, determine the outcome. a) The car stops 5.5 m before the tree. b) The car stops just before reaching the tree. c) As the car crashes into the tree, its speed is 18 m/s. d) As the car crashes into the tree, its speed is 9.3 m/s. e) This problem cannot be solved without knowing the mass of the car.

8.7.1. A car is being driven along a country road on a dark and rainy night at a speed of 20 m/s. The section of road is horizontal and straight. The driver sees that a tree has fallen and covered the road ahead. Panicking, the driver locks the brakes at a distance of 20 m from the tree. If the coefficient of friction between the wheels and road is 0.8, determine the outcome. a) The car stops 5.5 m before the tree. b) The car stops just before reaching the tree. c) As the car crashes into the tree, its speed is 18 m/s. d) As the car crashes into the tree, its speed is 9.3 m/s. e) This problem cannot be solved without knowing the mass of the car.

8. 7. 2. A rubber ball is dropped from rest from a height h 8.7.2. A rubber ball is dropped from rest from a height h. The ball bounces off the floor and reaches a height of 2h/3. How can we use the principle of the conservation of mechanical energy to interpret this observation? a) During the collision with the floor, the floor did not push hard enough on the ball for it to reach its original height. b) Some of the ball’s potential energy was lost in accelerating it toward the floor. c) The force of the earth’s gravity on the ball prevented it from returning to its original height. d) Work was done on the ball by the gravitational force that reduced the ball’s kinetic energy. e) Work was done on the ball by non-conservative forces that resulted in the ball having less total mechanical energy after the bounce.

8. 7. 2. A rubber ball is dropped from rest from a height h 8.7.2. A rubber ball is dropped from rest from a height h. The ball bounces off the floor and reaches a height of 2h/3. How can we use the principle of the conservation of mechanical energy to interpret this observation? a) During the collision with the floor, the floor did not push hard enough on the ball for it to reach its original height. b) Some of the ball’s potential energy was lost in accelerating it toward the floor. c) The force of the earth’s gravity on the ball prevented it from returning to its original height. d) Work was done on the ball by the gravitational force that reduced the ball’s kinetic energy. e) Work was done on the ball by non-conservative forces that resulted in the ball having less total mechanical energy after the bounce.

8.7.3. The Jensens decided to spend their family vacation white water rafting. During one segment of their trip down a horizontal section of the river, the raft (total mass = 544 kg) has an initial speed of 6.75 m/s. The raft then drops a vertical distance of 14.0 m, ending with a final speed of 15.2 m/s. How much work was done on the raft by non-conservative forces? a) 12 100 J b) 18 200 J c) 24 200 J d) 36 300 J e) 48 400 J

8.7.3. The Jensens decided to spend their family vacation white water rafting. During one segment of their trip down a horizontal section of the river, the raft (total mass = 544 kg) has an initial speed of 6.75 m/s. The raft then drops a vertical distance of 14.0 m, ending with a final speed of 15.2 m/s. How much work was done on the raft by non-conservative forces? a) 12 100 J b) 18 200 J c) 24 200 J d) 36 300 J e) 48 400 J

8. 8. 1. A dam blocks the passage of a river and generates electricity 8.8.1. A dam blocks the passage of a river and generates electricity. Approximately, 57 000 kg of water fall each second through a height of 19 m. If one half of the gravitational potential energy of the water were converted to electrical energy, how much power would be generated? a) 2.7 × 106 W b) 5.3 × 106 W c) 1.1 × 107 W d) 1.3 × 108 W e) 2.7 × 108 W

8. 8. 1. A dam blocks the passage of a river and generates electricity 8.8.1. A dam blocks the passage of a river and generates electricity. Approximately, 57 000 kg of water fall each second through a height of 19 m. If one half of the gravitational potential energy of the water were converted to electrical energy, how much power would be generated? a) 2.7 × 106 W b) 5.3 × 106 W c) 1.1 × 107 W d) 1.3 × 108 W e) 2.7 × 108 W

8.8.2. If the amount of energy needed to operate a 100 W light bulb for one minute were used to launch a 2-kg projectile, what maximum height could the projectile reach, ignoring any resistive effects? a) 20 m b) 50 m c) 100 m d) 200 m e) 300 m

8.8.2. If the amount of energy needed to operate a 100 W light bulb for one minute were used to launch a 2-kg projectile, what maximum height could the projectile reach, ignoring any resistive effects? a) 20 m b) 50 m c) 100 m d) 200 m e) 300 m

8. 8. 3. A 65-kg hiker eats a 250 C-snack 8.8.3. A 65-kg hiker eats a 250 C-snack. Assuming the body converts this snack with an efficiency of 25%, what change of altitude could this hiker achieve by hiking up the side of a mountain before completely using the energy in the snack? One food calorie (C) is equal to 4186 joules. a) 270 m b) 410 m c) 650 m d) 880 m e) 1600 m

8. 8. 3. A 65-kg hiker eats a 250 C-snack 8.8.3. A 65-kg hiker eats a 250 C-snack. Assuming the body converts this snack with an efficiency of 25%, what change of altitude could this hiker achieve by hiking up the side of a mountain before completely using the energy in the snack? One food calorie (C) is equal to 4186 joules. a) 270 m b) 410 m c) 650 m d) 880 m e) 1600 m