A seasonal hydrologic forecast system for the western U.S.

Slides:



Advertisements
Similar presentations
Drought Monitoring and Prediction Systems at the University of Washington and Princeton University Climate Diagnostics and Prediction Workshop Lincoln,
Advertisements

Hydrologic Outlook for the Pacific Northwest Andy Wood and Dennis P. Lettenmaier Department of Civil and Environmental Engineering for Washington Water.
Alan F. Hamlet Andy Wood Dennis P. Lettenmaier JISAO Center for Science in the Earth System Climate Impacts Group and Department of Civil and Environmental.
Alan F. Hamlet Andy Wood Dennis P. Lettenmaier JISAO Center for Science in the Earth System Climate Impacts Group and Department of Civil and Environmental.
Experimental Real-time Seasonal Hydrologic Forecasting Andrew Wood Dennis Lettenmaier University of Washington Arun Kumar NCEP/EMC/CMB presented: JISAO.
Alan F. Hamlet Andy Wood Dennis P. Lettenmaier JISAO Climate Impacts Group and the Department of Civil Engineering University of Washington September,
Seasonal outlooks for hydrology and water resources: streamflow, reservoir, and hydropower forecasts for the Pacific Northwest Andy Wood and Alan Hamlet.
Seasonal outlooks for hydrology and water resources in the Pacific Northwest Andy Wood Alan Hamlet Dennis P. Lettenmaier Department of Civil and Environmental.
Seasonal outlooks for hydrology and streamflow in the western U.S. Andy Wood, Alan Hamlet and Dennis P. Lettenmaier Department of Civil and Environmental.
Alan F. Hamlet Andy Wood Dennis P. Lettenmaier JISAO Center for Science in the Earth System Climate Impacts Group and Department of Civil and Environmental.
Alan F. Hamlet Andy Wood Seethu Babu Marketa McGuire Dennis P. Lettenmaier JISAO Climate Impacts Group and the Department of Civil Engineering University.
Seasonal outlooks for hydrology and water resources: streamflow, reservoir, and hydropower forecasts for the Pacific Northwest Andy Wood and Alan Hamlet.
Recap of Water Year 2009 Hydrologic Forecast and Forecasts for Water Year 2010 Francisco Munoz-Arriola Alan F. Hamlet Shraddhanand Shukla Dennis P. Lettenmaier.
Alan F. Hamlet Andy Wood Dennis P. Lettenmaier JISAO Climate Impacts Group and the Department of Civil Engineering University of Washington September,
Current Website: An Experimental Surface Water Monitoring System for Continental US Andy W. Wood, Ali.
Andy Wood, Ted Bohn, George Thomas, Ali Akanda, Dennis P. Lettenmaier University of Washington west-wide experimental hydrologic forecast system OBJECTIVE.
Alan F. Hamlet Andrew W. Wood Dennis P. Lettenmaier JISAO Center for Science in the Earth System Climate Impacts Group and Department of Civil and Environmental.
Experimental seasonal hydrologic forecasting for the Western U.S. Dennis P. Lettenmaier Andrew W. Wood, Alan F. Hamlet Climate Impacts Group University.
Current WEBSITE: An Experimental Daily US Surface Water Monitor Andy W. Wood, Ali S. Akanda, and Dennis.
Improving seasonal range hydro-meteorological predictions -- Hydrologic perspective Dennis P. Lettenmaier Department of Civil and Environmental Engineering.
Andy Wood, Alan Hamlet and Dennis P. Lettenmaier University of Washington A west-wide seasonal to interannual hydrologic forecast system  We have implemented.
Andy Wood, Alan Hamlet, Seethu Babu, Marketa McGuire and Dennis P. Lettenmaier A West-wide Seasonal to Interannual Hydrologic Forecast System OVERVIEW.
Sources of Skill and Error in Long Range Columbia River Streamflow Forecasts: A Comparison of the Role of Hydrologic State Variables and Winter Climate.
UW Experimental West-wide Seasonal Hydrologic Forecasting System Andy Wood and Dennis P. Lettenmaier Department of Civil and Environmental Engineering.
Assessing the Influence of Decadal Climate Variability and Climate Change on Snowpacks in the Pacific Northwest JISAO/SMA Climate Impacts Group and the.
Hydrologic Forecasting Alan F. Hamlet Dennis P. Lettenmaier JISAO/CSES Climate Impacts Group Dept. of Civil and Environmental Engineering University of.
Alan F. Hamlet Andy Wood Dennis P. Lettenmaier JISAO Center for Science in the Earth System Climate Impacts Group and the Department.
Implementing Probabilistic Climate Outlooks within a Seasonal Hydrologic Forecast System Andy Wood and Dennis P. Lettenmaier Department of Civil and Environmental.
Remote Sensing Applications to Improve Seasonal Forecasting of Streamflow and Reservoir Storage in the Upper Snake River Basin Marketa McGuire, Andy W.
Long-lead streamflow forecasts: 2. An approach based on ensemble climate forecasts Andrew W. Wood, Dennis P. Lettenmaier, Alan.F. Hamlet University of.
Current WEBSITE: Experimental Surface Water Monitor for the Continental US Ali S. Akanda, Andy W. Wood,
Long-Range Streamflow Forecasting Products and Water Resources Management Applications in the Columbia River Basin Alan F. Hamlet, Andy Wood, Dennis P.
Upper Rio Grande R Basin
Andrew Wood, Ali Akanda, Dennis Lettenmaier
2005 Water Resources Outlook for Idaho and the Western U.S.
(April, 2001-September, 2002) JISAO Climate Impacts Group and the
Alan F. Hamlet, Andy Wood, Dennis P. Lettenmaier
Hydrologic forecasting for the NAMS region – extension of the University of Washington westwide forecast system Dennis P. Lettenmaier Chunmei Zhu Andrew.
Challenges in western water management: What can science offer?
Hydrologic implications of 20th century warming in the western U.S.
Seasonal outlooks for hydrology and water resources: streamflow forecasts for the Columbia River basin Andrew Wood Alan Hamlet Marketa McGuire Dennis.
Dennis P. Lettenmaier, Andrew W. Wood, Ted Bohn, George Thomas
A West-wide Seasonal to Interannual Hydrologic Forecast System
Hydrologic ensemble prediction - applications to streamflow and drought Dennis P. Lettenmaier Department of Civil and Environmental Engineering And University.
2006 Water Resources Outlook for Idaho and the Western U.S.
Trends in Runoff and Soil Moisture in the Western U.S
Kostas M. Andreadis1, Dennis P. Lettenmaier1
Hydrologic Forecasting
Andy Wood and Dennis Lettenmaier
Long-Lead Streamflow Forecast for the Columbia River Basin for
Effects of Temperature and Precipitation Variability on Snowpack Trends in the Western U.S. JISAO/SMA Climate Impacts Group and the Department of Civil.
Andrew Wood, Alan Hamlet, Dennis Lettenmaier University of Washington
Land surface modeling for real-time hydrologic prediction and drought forecasting Dennis P. Lettenmaier Department of Civil and Environmental Engineering.
UW Westwide experimental hydrologic forecast system
Advances in seasonal hydrologic prediction
A. Wood, A.F. Hamlet, M. McGuire, S. Babu and Dennis P. Lettenmaier
University of Washington Center for Science in the Earth System
Hydrologic issues in the measurement of snowfall
N. Voisin, J.C. Schaake and D.P. Lettenmaier
Andy Wood and Dennis P. Lettenmaier
Long-Range Hydropower Forecasts for the Columbia River, Colorado River, and Sacramento/San Joaquin Systems Alan F. Hamlet, Andrew Wood, Nathalie Voisin.
Results for Basin Averages of Hydrologic Variables
University of Washington experimental west-wide seasonal hydrologic forecast system Dennis P. Lettenmaier Department of Civil and Environmental Engineering.
Andrew W. Wood Dennis P. Lettenmaier
HYDROLOGIC APPLICATIONS AT THE UNIVERSITY OF WASHINGTON
UW Hydrologic Forecasting: Yakima R. Discussion
2006 Water Resources Outlook for the Columbia River Basin
Alan F. Hamlet, Andrew W. Wood, Dennis P. Lettenmaier,
An Experimental Daily US Surface Water Monitor
Results for Basin Averages of Hydrologic Variables
Presentation transcript:

A seasonal hydrologic forecast system for the western U.S. Andy Wood, Alan Hamlet, Seethu Babu, Marketa McGuire and Dennis P. Lettenmaier Univ. of Washington 1 Components of Overall Real-time Forecasting Approach OVERVIEW We have implemented the Variable Infiltration Capacity (VIC) hydrology model over the western U.S. at 1/8 degree spatial resolution for ensemble hydrologic prediction at lead times of 6 months to 1 year. Real-time hydrologic forecasts are made once monthly using initial conditions simulated with real-time observations of temperature and precipitation, and adjusted via the assimilation of SNOTEL snow water equivalent and, experimentally, MODIS snow-covered area. Benchmark climate forecasts are constructed via the well-known Extended Streamflow Prediction (ESP) method of the National Weather Service. The ESP forecasts are further composited to provide ENSO and PDO-conditioned ensembles. Experimental hydrologic forecasts are also made using climate forecast ensembles derived from the NCEP Global Spectral Model (GSM), the NASA NSIPP-1 model, and the CPC official seasonal outlooks. These are used to drive experimental reservoir forecasts in some locations. 2 3 Climate Forecasts Downscaling Hydrologic Model (Liang et al., 1994) Hydrologic Forecasting Simulations NCEP GSM forecasts Climate Model Forecasts T62 (~1.9 degree) resolution 6 month forecast duration 20-member ensembles, monthly P, T A retrospective hydroclimatology is used for: Statistical bias-correction of climate model ensembles of monthly P, T at climate model scale Spatial disaggregation to 1/8 degree hydrologic model scale Temporal disag. from monthly to daily time step detailed, assessed in Wood et al. (2002, 2004) NSIPP-1 Tier 1 forecasts 2 x 2.5 degree (lat x lon) resolution 7 month forecast duration 9-member ensembles, monthly P, T ESP forecasts CPC Outlooks VIC model resolution (1/8 degree) historical 12-month daily sequences from 1960-99 Resampling approach (the Schaake Shuffle of Clark et al., 2004) creates ensemble traces. Spatial/temporal disaggregation as above CPC Official Outlooks based on 102 Climate Divisions 13-member ensemble derived from monthly P, T probability distributions Review of Pilot Implementation: Columbia River Basin in Winter 2003 Expansion to Current Forecasting System (starting Sept. 2003) 4 5 Our initial forecast domain was the Pacific Northwest. Real-time bi-monthly updates began at the end of December, 2002, and ran through April 2003. NRCS SNOTEL / EC ASP observed SWE anomalies are interpolated in distance and elevation to hydrologic grid cell elevation bands, and linearly combined with simulated anomalies, to adjust the hydrologic model state at the start of the forecast. 2) spin-up met. data improvements method / MODIS experiments not illustrated Spatial forecasts related to historical conditions (as anomalies and percentiles w.r.t. 1960-99) Forecasts posted on web page www.hydro.washington.edu/Lettenmaier/Projects/fcst/ Example: NCEP Global Spectral Model (GSM) forecasts (leads 1-3 months shown, for May 25 initial conditions) Primary Upgrades to the forecasting system included: 1) the implementation of a simple method for assimilating snow water equivalent (SWE) observations at the start of the forecast, 2) a modification of the surface forcing estimation immediately prior to the forecast start using a set of real-time index stations We began adapting a set of reservoir system models for the western U.S to produce ensemble forecasts of reservoir system storages, operations and releases. example obs SWE anomalies corresponding SWE adjustment Columbia River Sacramento River Selected Results Trinity Whiskeytown Shasta Oroville (SWP) Folsom Clear Creek American River Feather River Trinity River Sacramento River Dam Power Plant River Transfer Delta SYNOPSIS: early winter snowpack deficits recovered somewhat, but ultimately led to moderate streamflow deficits in spring and summer. Initial hydrologic condition estimates Snow Water Equivalent Example forecast for 2 (of ~50 active) locations (from March 25 initial conditions) Verification / Comparison with RFC runoff volume forecasts Jan 15, 2003 Dec 28, 2002 Feb 1, 2003 Apr 1, 2003 In late March, initial conditions (at left) reflect below average moisture (soil and snow) in the mountains of the central and northern. ID, but early snowmelt in the lower areas of eastern WA and OR, and northern CA. These led to below average forecasts of summer streamflow for the Columbia River (location 1), which drains the PNW, and above average flow forecasts for the Sacramento River (location 2), which drains areas of NE California and south central OR. 1 2 Snow Water Equivalent Soil Moisture Streamflow Forecasts The UW Columbia R. ESP forecast (right) showed in fall 2003 that, due to low soil moisture and below average early snowpack in southern British Columbia, runoff would likely be below average. The NWS forecasts predicted near normal summer runoff until late Feb. and Mar., when dry and warm conditions abruptly reduced western US snowpacks, after which they converged toward the UW forecasts at about 80 percent of long-term average runoff. In N. California, similarly, low fall soil moistures indicated low summer runoff, but then snowpacks grew deeper than normal until their early melt in March. The UW ESP forecasts reflect these conditions. 1 Colorado River San Joaquin River Dam Power Plant River/Canal Transfer Eastman, Hensley, & Millerton New Don Pedro & McClure Delta New Hogan Pardee & Camanche Stanislaus River Tuolumne & Merced Rivers Delta Outflow Mokelumne River Calaveras River San Joaquin River New Melones San Luis Streamflow hydrograph forecasts (example from February 1) Feb 1 observed observed 2 2003 Summer streamflow volume forecast comparison with NWS / NRCS official forecasts UW forecasts halted Reservoir system forecast experiments 6-Month Ensemble Forecasts of System Storage for the Columbia River Basin Using VIC Streamflow Forecasts and the ColSim Reservoir Model Initialized by Observed Reservoir Elevations (~ Feb 1, 2001) Ongoing Work Simulated System Storage (acre-ft) Simulated System Storage (acre-ft) min max fcst. ens. mean historical mean re-evaluating the NASA/NOAA NLDAS 1/8 degree forcing product as a potential real-time forcing in Western U.S. automating nowcast / initial condition simulation to occur on weekly basis adopting selected experimental reservoir system forecasts as routine products comparing nowcasts with retrospective simulations now in progress extending back to 1915 (rather than 1960). References / Acknowledgements Wood, A.W., E.P. Maurer, A. Kumar and D.P. Lettenmaier, 2002. Long Range Experimental Hydrologic Forecasting for the Eastern U.S., J. Geophys. Res., 107(D20). Wood, A.W., A. Kumar and D.P. Lettenmaier, 2004, A retrospective assessment of NCEP GSM-based ensemble hydrologic forecasting in the western U.S., J. Geophys. Res. (in review) Liang, X., D. P. Lettenmaier, E. F. Wood and S. J. Burges, 2004. A Simple Hydrologically Based Model of Land Surface Water and Energy Fluxes for GCMs, J. Geophys. Res., 99(D7). Clark, M., S. Gangopadhyay, L. Hay, B. Rajagopalan and R. Wilby, 2004. The SCHAAKE Shuffle: A method for reconstructing space-time variability in forecasted precipitation and temperature fields, J. Hydrometeorology, 5, 243-262. The authors acknowledge the support of NOAA/OGP, the IRI/ARCS Regional Applications Project, and the NASA Seasonal-to-Interannual Prediction Project (NSIPP).