Observation of Pulsars and Plerions with MAGIC

Slides:



Advertisements
Similar presentations
Fermi rules out EC/CMB as the X-ray emission mechanism for 3C 273 Markos Georganopoulos 1,2 Eileen T. Meyer 3 1 University of Maryland, Baltimore County.
Advertisements

Modeling the SED and variability of 3C66A in 2003/2004 Presented By Manasvita Joshi Ohio University, Athens, OH ISCRA, Erice, Italy 2006.
Pulsar High Energy Emission Models: What Works and What Doesn't “Standard” outer magnetosphere models - successes Shortcomings of the models Next steps?
5th Science AGILE Workshop, June Observations of pulsars with MAGIC Marcos López (INFN/Padova) on behalf of the MAGIC collaboration.
Pulsar Wind Nebulae with LOFAR Jason Hessels (ASTRON/UvA) Astrophysics with E-LOFAR - Hamburg - Sept. 16 th -19 th, 2008.
2009 July 8 Supernova Remants and Pulsar Wind Nebulae in the Chandra Era 1 Modeling the Dynamical and Radiative Evolution of a Pulsar Wind Nebula inside.
Study on polarization of high- energy photons from the Crab pulsar 〇 J. Takata (TIARA-NTHU/ASIAA,Taiwan) H.-K. Chang (NTH Univ., Taiwan) K.S. Cheng (HK.
The Phase-Resolved Spectra of the Crab Pulsar Jianjun Jia Jan 3, 2006.
Mathieu de Naurois, H.E.S.S.High Energy Phenomena in the Galacic Center H.E.S.S. Observations of the Galactic Center  The H.E.S.S. Instrument.
Diffuse Gamma-Ray Emission Su Yang Telescopes Examples Our work.
Neutron Star Environment: from Supernova Remnants to Pulsar Wind Nebulae Stephen C.-Y. Ng McGill University Special thanks to Pat Slane for some materials.
A THREE-DIMENSIONAL OUTER MAGETOSPHERIC MODEL FOR GAMMA-RAY PULSARS : GEOMETRY, PAIR PRODUCTION, EMISSION MORPHOLOGIES, AND PHASE- RESOLVED SPECTRA K.S.CHENG,
Three types of PWN for IBIS/ISGRI: Seen by IBIS - some discussed here ~ 10 (16%) Pulsar seen in radio but not seen by IBIS ~ 25 (42%) No radio pulsar.
July 2004, Erice1 The performance of MAGIC Telescope for observation of Gamma Ray Bursts Satoko Mizobuchi for MAGIC collaboration Max-Planck-Institute.
Magnetic Fields in Supernova Remnants and Pulsar-Wind Nebulae 2013/12/18 Speaker : Yu-Hsun Cheng Professor: Yosuke Mizuno.
Alexander Kappes UW-Madison 4 th TeVPA Workshop, Beijing (China) Sep. 24 – 28, 2008 The Hunt for the Sources of the Galactic Cosmic Rays — A multi-messenger.
The VHE gamma-ray sky viewed with H.E.S.S. Werner Hofmann MPI für Kernphysik Heidelberg © Philippe Plailly HESS = High Energy Stereoscopic System.
Potential Neutrino Signals from Galactic  -Ray Sources Alexander Kappes, Christian Stegmann University Erlangen-Nuremberg Felix Aharonian, Jim Hinton.
The TeV view of the Galactic Centre R. Terrier APC.
Quasar large scale jets: Fast and powerful or weak and slow, but efficient accelerators? Markos Georganopoulos 1,2 1 University of Maryland, Baltimore.
Giant Radio Pulses Radio Properties Mechanism High Energy Properties With Astrosat & LOFT.
Pulsar wind nebulae and their interaction with the environments Fangjun Lu 卢方军 Institute of High Energy Physics Chinese Academy of Sciences.
Tobias Jogler Max-Planck Institute for Physics Taup 2007 MAGIC Observations of the HMXB LS I in VHE gamma rays Tobias Jogler on behalf of the MAGIC.
Multi-Zone Modeling of Spatially Non-uniform Cosmic Ray Sources Armen Atoyan Concordia University, Montreal FAA60 Barcelona, 7 November 2012.
HESS J An exceptionally luminous TeV γ-ray SNR Stefan Ohm (DESY, Zeuthen) Peter Eger (MPIK, Heidelberg) On behalf of the H.E.S.S. collaboration.
MA4: HIGH-ENERGY ASTROPHYSICS Critical situation of manpower : 1 person! Only «free research» based in OAT. Big collaborations based elsewhere (Fermi,
Liverpool: 08-10/04/2013 Extreme Galactic Particle Accelerators The case of HESS J Stefan Ohm ( Univ. of Leicester), Peter Eger, for the H.E.S.S.
Introduction to the High Energy Astrophysics Introductory lecture.
Associations of H.E.S.S. VHE  -ray sources with Pulsar Wind Nebulae Yves Gallant (LPTA, U. Montpellier II, France) for the H.E.S.S. Collaboration “The.
Outline Cosmic Rays and Super-Nova Remnants
A Pulsar Wind Nebula Origin for Luminous TeV Source HESS J Joseph Gelfand (NYUAD / CCPP) Eric Gotthelf, Jules Halpern (Columbia University), Dean.
Tobias Jogler Max – Planck Institute für Physik MAGIC Observations of the HMXB LS I in VHE gamma rays Tobias Jogler on behalf.
Takayasu Anada ( anada at astro.isas.jaxa.jp), Ken Ebisawa, Tadayasu Dotani, Aya Bamba (ISAS/JAXA)anada at astro.isas.jaxa.jp Gerd Puhlhofer, Stefan.
Bremen, Germany Patrick Slane (CfA) COSPAR 2010: E19 Fermi Studies of Collaborators: D. Castro S. Funk Y. Uchiyama J. D. Gelfand O. C. de Jager A. Lemiere.
Potential Neutrino Signals from Galactic  -Ray Sources Alexander Kappes, Christian Stegmann University Erlangen-Nuremberg Felix Aharonian, Jim Hinton.
VHE  -ray Emission From Nearby FR I Radio Galaxies M. Ostrowski 1 & L. Stawarz 1,2 1 Astronomical Observatory, Jagiellonian University 2 Landessternwarte.
Masaki Yamaguchi, F. Takahara Theoretical Astrophysics Group Osaka University, Japan Workshop on “Variable Galactic Gamma-ray Source” Heidelberg December.
Gamma-Ray Emission from Pulsars
A fast online and trigger-less signal reconstruction Arno Gadola Physik-Institut Universität Zürich Doktorandenseminar 2009.
Damien Parent – Moriond, February PSR J , PSR J , and their cousins -- young & noisy gamma ray pulsars Damien Parent on behalf of.
Study of Young TeV Pulsar Wind Nebulae with a Spectral Evolution Model Shuta J. Tanaka & Fumio Takahara Theoretical Astrophysics Group Osaka Univ., Japan.
Pulsars and PWNs as sources of high-energy particles Jarosław Dyks CAMK, Toruń.
Tobias Jogler Max – Planck Institut für Physik The MAGIC view of our Galaxy Tobias Jogler for the MAGIC Collaboration.
Fermi Several Constraints by Fermi Zhuo Li ( 黎卓 ) Department of Astronomy, Peking University Kavli Institute of Astronomy and Astrophysics 23 August, Xiamen.
Recent Observations of Supernova Remnants with VERITAS Amanda Weinstein (Iowa State University) For the VERITAS Collaboration.
Tobias Jogler Max-Planck Institut für Physik IMPRS YSW Ringberg 2007 VHE emission from binary systems Outline Binary systems Microquasar Pulsar binaries.
GLAST Observations of Supernova Remnants and Pulsar Wind Nebulae Bryan Gaensler The University of Sydney / Harvard-Smithsonian Center for Astrophysics.
The April 2011 gamma-ray flare: A new astrophysical puzzle R. Buehler for the Fermi-LAT collaboration and A. Tennant, P. Caraveo, E. Costa, D. Horns, C.
Multi-wavelength observations of PSR B during its 2010 periastron passage Masha Chernyakova(DIAS), Andrii Neronov (ISDC), Aous Abdo (GMU), Damien.
On behalf of the ARGO-YBJ collaboration
the global pulsar magnetosphere
Gamma Rays from the Radio Galaxy M87
Optical Crosstalk in SiPM
MAGIC M.Teshima MPI für Physik, München (Werner-Heisenberg-Institut)
Basic Properties By Dr. Lohse, University of Berlin
A statistical model to explain the gamma-ray flare and variability of Crab nebula Qiang Yuan Institute of High Energy Physics, Chinese Academy of Sciences.
Fermi Collaboration Meeting
Observation of microquasars with the MAGIC telescope
Junior Research Fellow,
CANAGAROO-II PSR B Yamagata Univ. N.Sakamoto , S.Gunji
High Energy emission from the Galactic Center
Alexander Kappes Francis Halzen Aongus O’Murchadha
Modelling of non-thermal radiation from pulsar wind nebulae
SNRs as PeVatron candidates for CTA
Massive star clusters as Sources of Galactic Cosmic Rays (arXiv:1804
Can we probe the Lorentz factor of gamma-ray bursts from GeV-TeV spectra integrated over internal shocks ? Junichi Aoi (YITP, Kyoto Univ.) co-authors:
Synchro-Curvature Self Compton Radiation
Kunihito Ioka & Mihoko M. Nojiri (KEK, Japan)
Fermi LAT Observations of Galactic X-ray binaries
Presentation transcript:

Observation of Pulsars and Plerions with MAGIC The Crab Nebula in X-rays (Chandra) Nepomuk Otte for the MAGIC collaboration

Outline the pulsar wind complex pulsar pulsar wind nebula the MAGIC telescope Observations: Crab / PSR B1951+32 Conclusions Max-Planck-Institut für Physik / Humboldt Universität Berlin

The Pulsar Wind Nebula Complex magnetized, spinning neutron star powerful source of energy particle acceleration in: magnetosphere shock front pulsar powerful source of energy VHE gamma-rays expected from various sites up to now only the nebula detected in VHE gamma rays (at least that is what people believe) one ofter the other relativistic particles emit VHE-γ-rays γ-rays are messengers of non-thermal processes Max-Planck-Institut für Physik / Humboldt Universität Berlin

Gamma-Ray Emission from the Pulsar Crab pulsar in optical three different sites favored for particle acceleration emission appears pulsed lighthouse model Max-Planck-Institut für Physik / Humboldt Universität Berlin

Pulsar: Broadband Emission MAGIC spectroscopy >10GeV needed strong cutoff exponential or even stronger Thompson et al. 1999 HE-emission processes synchrotron radiation curvature radiation inverse Compton scattering no pulsar detected above ~100GeV Max-Planck-Institut für Physik / Humboldt Universität Berlin

The Pulsar Wind Nebula Complex shock front acceleration up to 1016 eV synchrotron emission inverse Compton scattering SSC model electrons stream out in uniform flow from the pulsar accelerated at standig reverse shock, randomized in pitch angle cooled by synchrotron radiation VHE-gamma rays due to IC scattering of thermal photons or synchrotron photons. Max-Planck-Institut für Physik / Humboldt Universität Berlin

PWN: Broadband Emission MAGIC Synchrotron Spectrum well described in MHD model calculations Above 1GeV inverse Compton scattering dominates observational gap between 10GeV and ~400GeV Aharonian & Atoyan (1998) Max-Planck-Institut für Physik / Humboldt Universität Berlin

Crab and PSR B1951+32 Pulsar Crab PSR B1951+32 Age ~103 yrs ~105 yrs Energy loss rate 1038 erg sec-1 4x1036 erg sec-1 Maximum detected energy ~10 GeV ~20 GeV Spectral shape ~2.2 ~1.8 Indication of cutoff yes no pulsar space velocity 140±8 km sec-1 240±40 km sec-1 PWN in Gamma rays detected not detected Pulsar young vs. middle aged similar gamma ray luminosities at 10GeV no cutoff in prs1951  prime candidate for observation pwn should be detectable with MAGIC according to predictions but first for the pulsar case Max-Planck-Institut für Physik / Humboldt Universität Berlin

The MAGIC Telescope largest Air Cherenkov Telescope lowest energy threshold ~50GeV highest sensitivity >200GeV ~2% Crab in 50 hours γ-PSF ~ 0.1° energy resolution: ~30% at 100 GeV ~20% > 300 GeV Max-Planck-Institut für Physik / Humboldt Universität Berlin

Crab Pulsar preliminary ~65 GeV no pulsed emission detected cutoff <30 GeV Max-Planck-Institut für Physik / Humboldt Universität Berlin

PSR B1951+32 Pulsar no pulsed emission detected strong constrain on the cutoff energy <30GeV constrain predicted IC at TeV previous observations compare note for experts; polar cap more favorable than outer gap predicted IC flux higher than in Crab not detectedunfavorable magnetic field configuration at the light cylinder überleitung auf nebel Max-Planck-Institut für Physik / Humboldt Universität Berlin

The Crab Nebula preliminary gamma-ray emission detected over two decades of energy 60 GeV – 9 TeV preliminary power-law behavior disfavored Max-Planck-Institut für Physik / Humboldt Universität Berlin

Crab Nebula: Broad Band Emisision good agreement with other experiments >400GeV data well described in SSC framework just above the expected IC-peak preliminary Spectral energy density Max-Planck-Institut für Physik / Humboldt Universität Berlin

Crab Nebula: Change of Photon Index clear change of photon index with energy nicely reproduced by model calculations preliminary Max-Planck-Institut für Physik / Humboldt Universität Berlin

Crab Nebula: Variability no variability detected on several time scales: minutes days months preliminary preliminary 10 minute binning flux steady within experimental resolution Max-Planck-Institut für Physik / Humboldt Universität Berlin

CTB80 / PSR B1951+32 no detection of gamma-ray emission Max-Planck-Institut für Physik / Humboldt Universität Berlin

CTB80 / PSR B1951+32 model calculation do not take pulsar motion into account emission smeared over a larger volume? magnetic field larger than assumed  wind not particle dominated? emission smeared  reduced sensitivity propto 1/sqrt(area) Max-Planck-Institut für Physik / Humboldt Universität Berlin

Conclusions no pulsed gamma-ray emission from Crab and PSR B1951+32 (a prime candidate to search for pulsed emission) need to lower the threshold below 50 GeV  MAGIC II / CTA, better photon detectors (see e.g. T 604.4) no steady emission from CTB80/PSR B1951+32 (< few %Crab) motion of pulsar has to be taken into account in models pulsar wind particle dominated (σ>1)? Crab nebula emission detected down to 60 GeV good agreement with SSC model no variability detected consistent with a point source Max-Planck-Institut für Physik / Humboldt Universität Berlin

80 GeV to 100 GeV (estimated energy) Max-Planck-Institut für Physik / Humboldt Universität Berlin

Crab Nebula: Morphology gamma-ray source is pointlike for MAGIC down to 100 GeV expect increasing source size with decreasing energy preliminary ~250 GeV emission: center of gravity upper limit on the emission region <2.3’ Max-Planck-Institut für Physik / Humboldt Universität Berlin