Search Engines and Link Analysis on the Web

Slides:



Advertisements
Similar presentations
Lecture 18: Link analysis
Advertisements

Markov Models.
Matrices, Digraphs, Markov Chains & Their Use by Google Leslie Hogben Iowa State University and American Institute of Mathematics Leslie Hogben Iowa State.
Graphs, Node importance, Link Analysis Ranking, Random walks
CS345 Data Mining Link Analysis Algorithms Page Rank Anand Rajaraman, Jeffrey D. Ullman.
Link Analysis: PageRank
CS345 Data Mining Page Rank Variants. Review Page Rank  Web graph encoded by matrix M N £ N matrix (N = number of web pages) M ij = 1/|O(j)| iff there.
Link Analysis David Kauchak cs160 Fall 2009 adapted from:
More on Rankings. Query-independent LAR Have an a-priori ordering of the web pages Q: Set of pages that contain the keywords in the query q Present the.
Experiments with MATLAB Experiments with MATLAB Google PageRank Roger Jang ( 張智星 ) CSIE Dept, National Taiwan University, Taiwan
DATA MINING LECTURE 12 Link Analysis Ranking Random walks.
1 Algorithms for Large Data Sets Ziv Bar-Yossef Lecture 3 March 23, 2005
Introduction to Information Retrieval Introduction to Information Retrieval Hinrich Schütze and Christina Lioma Lecture 21: Link Analysis.
Introduction to PageRank Algorithm and Programming Assignment 1 CSC4170 Web Intelligence and Social Computing Tutorial 4 Tutor: Tom Chao Zhou
Information Retrieval IR10 Today’s lecture Anchor text Link analysis for ranking Pagerank and variants HITS.
Multimedia Databases SVD II. Optimality of SVD Def: The Frobenius norm of a n x m matrix M is (reminder) The rank of a matrix M is the number of independent.
Introduction to Information Retrieval Introduction to Information Retrieval Hinrich Schütze and Christina Lioma Lecture 21: Link Analysis.
1 Algorithms for Large Data Sets Ziv Bar-Yossef Lecture 3 April 2, 2006
Link Analysis, PageRank and Search Engines on the Web
CS345 Data Mining Link Analysis Algorithms Page Rank Anand Rajaraman, Jeffrey D. Ullman.
INF 2914 Web Search Lecture 4: Link Analysis Today’s lecture Anchor text Link analysis for ranking Pagerank and variants HITS.
CS347 Lecture 6 April 25, 2001 ©Prabhakar Raghavan.
PageRank Debapriyo Majumdar Data Mining – Fall 2014 Indian Statistical Institute Kolkata October 27, 2014.
Information Retrieval Link-based Ranking. Ranking is crucial… “.. From our experimental data, we could observe that the top 20% of the pages with the.
CS246 Link-Based Ranking. Problems of TFIDF Vector  Works well on small controlled corpus, but not on the Web  Top result for “American Airlines” query:
Motivation When searching for information on the WWW, user perform a query to a search engine. The engine return, as the query’s result, a list of Web.
Presented By: - Chandrika B N
Introduction to Information Retrieval Introduction to Information Retrieval Hinrich Schütze and Christina Lioma Lecture 21: Link Analysis.
Piyush Kumar (Lecture 2: PageRank) Welcome to COT5405.
Introduction to Information Retrieval (Manning, Raghavan, Schutze) Chapter 21 Link analysis.
PrasadL17LinkAnalysis1 Link Analysis Adapted from Lectures by Prabhakar Raghavan (Yahoo, Stanford) and Christopher Manning (Stanford)
ITCS 6265 Lecture 17 Link Analysis This lecture Anchor text Link analysis for ranking Pagerank and variants HITS.
Lecture 14: Link Analysis
CS276 Lecture 18 Link Analysis Today’s lecture Anchor text Link analysis for ranking Pagerank and variants HITS.
CS276 Information Retrieval and Web Search Christopher Manning and Prabhakar Raghavan Lecture 18: Link analysis.
Hyperlink Analysis for the Web. Information Retrieval Input: Document collection Goal: Retrieve documents or text with information content that is relevant.
Hyperlink Analysis for the Web. Information Retrieval Input: Document collection Goal: Retrieve documents or text with information content that is relevant.
Introduction to Information Retrieval Introduction to Information Retrieval Modified from Stanford CS276 slides Chap. 21: Link analysis.
CS315 – Link Analysis Three generations of Search Engines Anchor text Link analysis for ranking Pagerank HITS.
Web Search and Tex Mining Lecture 9 Link Analysis.
PageRank. s1s1 p 12 p 21 s2s2 s3s3 p 31 s4s4 p 41 p 34 p 42 p 13 x 1 = p 21 p 34 p 41 + p 34 p 42 p 21 + p 21 p 31 p 41 + p 31 p 42 p 21 / Σ x 2 = p 31.
CS349 – Link Analysis 1. Anchor text 2. Link analysis for ranking 2.1 Pagerank 2.2 Pagerank variants 2.3 HITS.
Link Analysis Rong Jin. Web Structure  Web is a graph Each web site correspond to a node A link from one site to another site forms a directed edge 
Ranking Link-based Ranking (2° generation) Reading 21.
COMP4210 Information Retrieval and Search Engines Lecture 9: Link Analysis.
CSCI 5417 Information Retrieval Systems Jim Martin Lecture 20 11/3/2011.
Web-Mining Agents Community Analysis Tanya Braun Universität zu Lübeck Institut für Informationssysteme.
Information Retrieval and Web Search Link analysis Instructor: Rada Mihalcea (Note: This slide set was adapted from an IR course taught by Prof. Chris.
CompSci 100E 4.1 Google’s PageRank web site xxx web site yyyy web site a b c d e f g web site pdq pdq.. web site yyyy web site a b c d e f g web site xxx.
Link Analysis Algorithms Page Rank Slides from Stanford CS345, slightly modified.
CS 540 Database Management Systems Web Data Management some slides are due to Kevin Chang 1.
Jeffrey D. Ullman Stanford University.  Web pages are important if people visit them a lot.  But we can’t watch everybody using the Web.  A good surrogate.
Modified by Dongwon Lee from slides by
Quality of a search engine
15-499:Algorithms and Applications
PageRank Random Surfers on the Web Transition Matrix of the Web Dead Ends and Spider Traps Topic-Specific PageRank Hubs and Authorities Jeffrey D. Ullman.
PageRank Random Surfers on the Web Transition Matrix of the Web Dead Ends and Spider Traps Topic-Specific PageRank Jeffrey D. Ullman Stanford University.
Link Analysis 2 Page Rank Variants
Information Retrieval Christopher Manning and Prabhakar Raghavan
Link-Based Ranking Seminar Social Media Mining University UC3M
PageRank and Markov Chains
DTMC Applications Ranking Web Pages & Slotted ALOHA
Lecture 22 SVD, Eigenvector, and Web Search
Prof. Paolo Ferragina, Algoritmi per "Information Retrieval"
CS 440 Database Management Systems
INFORMATION RETRIEVAL TECHNIQUES BY DR. ADNAN ABID
Prof. Paolo Ferragina, Algoritmi per "Information Retrieval"
Junghoo “John” Cho UCLA
Lecture 22 SVD, Eigenvector, and Web Search
Lecture 22 SVD, Eigenvector, and Web Search
Presentation transcript:

Search Engines and Link Analysis on the Web Lecture 8 CS 728

Ranking Web Pages: Query-independent ordering First generation: using link counts as simple measures of popularity. Two basic suggestions: Undirected popularity: Each page gets a score = the number of in-links plus the number of out-links (3+2=5). Directed popularity: Score of a page = number of its in-links (3).

Query processing First retrieve all pages meeting the text query (say venture capital). Order these by their link popularity (either variant on the previous page). How could you spam these rankings??

Pagerank scoring Idea: individual spammers cannot or should not compete with large consensus opinions Imagine many browsers doing random walks on web page graph: Start at random pages At each step, go out of the current page along one of the links on that page, equiprobably “In the steady state” each page has a long-term visit rate - use this as the page’s score. 1/3

Not quite enough The web is full of dead-ends. Random walk can get stuck in dead-ends. Makes no sense to talk about long-term visit rates. ??

Teleporting At a dead end, jump to a random web page. At any non-dead end, with probability 10%, jump to a random web page. With remaining probability (90%), go out on a random link. 10% - a parameter.

Result of teleporting Now cannot get stuck locally. There is a long-term rate at which any page is visited (not obvious, will show this). How do we compute this visit rate?

Theory of Markov chains A Markov chain is a series of states of a system such that every future state is conditionally independent of every prior state. A Markov chain consists of n states, plus an nn transition probability matrix P. At each step, we are in exactly one of the states. For 1  i,j  n, the matrix entry Pij tells us the probability of j being the next state, given we are currently in state i. i j Pij

Markov chains Clearly, for all i, Markov chains are abstractions of random walks. Exercise: represent the teleporting random walk from 3 slides ago as a Markov chain, for this case:

Ergodic Markov chains A Markov chain is ergodic if you have a path from any state to any other you can be in any state at every time step, with non-zero probability. Not ergodic (even/ odd).

Fundamental Theorem of Markov chains For any ergodic Markov chain, there is a unique long-term visit rate for each state. Steady-state distribution. Over a long time-period, we visit each state in proportion to this rate. And it doesn’t matter where we start. This distribution we use as page rank! Let’s compute it!

Probability vectors A probability (row) vector x = (x1, … xn) tells us where the walk is at any point. E.g., (000…1…000) means we’re in state i. 1 i n More generally, the vector x = (x1, … xn) means the walk is in state i with probability xi.

Change in probability vector If the probability vector is x = (x1, … xn) at this step, what is it at the next step? Recall that row i of the transition prob. Matrix P tells us where we go next from state i. So from x, our next state is distributed as xP.

For this example, a1=1/4 and a2=3/4. Steady state example The steady state looks like a vector of probabilities a = (a1, … an): ai is the probability that we are in state i. 3/4 1/4 1 2 3/4 1/4 For this example, a1=1/4 and a2=3/4.

How do we compute this vector? Let a = (a1, … an) denote the row vector of steady-state probabilities. If we our current position is described by a, then the next step is distributed as aP. But a is the steady state, so a=aP. Solving this matrix equation gives us a. So a is the (left) eigenvector for P. Corresponds to the “principal” eigenvector of P with the largest eigenvalue.Transition probability matrices always have larges eigenvalue 1.

One way of computing a Recall, regardless of where we start, we eventually reach the steady state a. Start with any distribution (say x=(10…0)). After one step, we’re at xP; after two steps at xP2 , then xP3 and so on. “Eventually” means for “large” k, xPk = a. Algorithm: multiply x by increasing powers of P until the product looks stable.

Pagerank summary Preprocessing: Given graph of links, build matrix P. From it compute a. The entry ai is a number between 0 and 1: the pagerank of page i. Query processing: Retrieve pages meeting query. Rank them by their pagerank. Order is query-independent. Pagerank is used in google, and other clever heuristics

Pagerank: Issues and Variants How realistic is the random surfer model? What if we modeled the back button? [Fagi00] Search engines, bookmarks & directories make jumps non-random. Biased Surfer Models Weight edge traversal probabilities based on match with topic/query (non-uniform edge selection) Bias jumps to pages on topic (e.g., based on personal bookmarks & categories of interest)

Topic Specific Pagerank [Have02] Conceptually, we use a random surfer who teleports, with say 10% probability, using the following rule: Selects a category (say, one of the 16 top level ODP categories) based on a query & user -specific distribution over the categories Teleport to a page uniformly at random within the chosen category Sounds hard to implement: can’t compute PageRank at query time!

Topic Specific Pagerank [Have02] Implementation offline:Compute pagerank distributions wrt to individual categories Query independent model as before Each page has multiple pagerank scores – one for each ODP category, with teleportation only to that category online: Distribution of weights over categories computed by query context classification Generate a dynamic pagerank score for each page - weighted sum of category-specific pageranks

Influencing PageRank (“Personalization”) Input: Web graph W influence vector v v : (page  degree of influence) Output: Rank vector r: (page  page importance wrt v) r = PR(W , v) basis web graph!!

Non-uniform Teleportation Sports Teleport with 10% probability to a Sports page

Interpretation of Composite Score For a set of personalization vectors {vj} j [wj · PR(W , vj)] = PR(W , j [wj · vj]) Weighted sum of rank vectors itself forms a valid rank vector, because PR() is linear wrt vj

Interpretation Sports 10% Sports teleportation

Interpretation Health 10% Health teleportation

Interpretation Health Sports pr = (0.9 PRsports + 0.1 PRhealth) gives you: 9% sports teleportation, 1% health teleportation

The Web as a Directed Graph Page A hyperlink Page B Anchor A hyperlink between pages denotes author perceived relevance (quality signal). Assumption: A link is an endorsement except when affiliated. Can we recognize affiliated links?