Three-body hadronic molecules.

Slides:



Advertisements
Similar presentations
Hadron physics with GeV photons at SPring-8/LEPS II
Advertisements

1 Xian-Hui Zhong Department of Physics, Hunan Normal University In collaboration with: Qiang Zhao The S=-1 baryons in the K - p scattering.
 の光発生反応 中村 聡 (阪大理) 共同研究者: 慈道 大介 ( 首都大) Prog. Theor. Exp. Phys. (2014) 023D01.
Exotic states in S=1 N  K system and low lying ½+ S=-1 resonances Kanchan Khemchandani, Departamento de Fisica, Universidad de Coimbra, Portugal. 19th.
Table of contents 1. Motivation 2. Formalism (3-body equation) 3. Results (KNN resonance state) 4. Summary Table of contents 1. Motivation 2. Formalism.
Theoretical study of e+e-  PP' and the new resonance X(2175) M. Napsuciale Universidad de Guanajuato E. Oset, K. Sasaki, C. A. Vaquera Araujo, S. Gómez.
EXOTIC MESONS WITH HIDDEN BOTTOM NEAR THRESHOLDS D2 S. OHKODA (RCNP) IN COLLABORATION WITH Y. YAMAGUCHI (RCNP) S. YASUI (KEK) K. SUDOH (NISHOGAKUSHA) A.
The charmonium-molecule hybrid structure of the X(3872) Makoto Takizawa (Showa Pharmaceutical Univ.) Sachiko Takeuchi (Japan College of Social Work) Kiyotaka.
Y. Ikeda and T. Sato (Osaka Univ.) ストレンジ・ダイバリオンの 質量と崩壊幅の研究 KNN resonance (Recent theoretical progress) KNN resonance (Recent theoretical progress) Faddeev.
Yoichi Ikeda (Osaka Univ.) in collaboration with Hiroyuki Kamano (JLab) and Toru Sato (Osaka Univ.) Introduction Introduction Our model of KN interaction.
The Baryon octet-vector meson interaction and dynamically generated resonances in the S=0 sector Bao-Xi SUN ( 孙宝玺 ) Beijing University of Technology Hirschegg.
1 Formation spectra of  -mesic nuclei by (  +,p) reaction at J-PARC and chiral symmetry for baryons Hideko Nagahiro (RCNP) Collaborators : Daisuke Jido.
Kraków, June 9th, 2015 Exotic quarkonium-like states Andrzej Kupsc Positronium – quarkonia XYZ studies at BESIII Zc states: Zc 0± (3900), Zc 0± (4020)
The Baryon octet-vector meson interaction and dynamically generated resonances in the S=0 sector 孙宝玺 北京工业大学 合作者 : 吕晓夫 四川大学 FHNP’15, 怀柔, 北京.
Dian-Yong Chen Institute of Modern Physics, CAS FHNP’15 Beijing Hadronic Loop Contributions to Heavy Quarkonium Decay
X(3872) production in high energy collisions University of São Paulo F.S. Navarra Introduction : exotic hadrons Production in pp and AA XIII International.
NEW TRENDS IN HIGH-ENERGY PHYSICS (experiment, phenomenology, theory) Alushta, Crimea, Ukraine, September 23-29, 2013 Effects of the next-to-leading order.
* Collaborators: A. Pich, J. Portolés (Valencia, España), P. Roig (UNAM, México) Daniel Gómez Dumm * IFLP (CONICET) – Dpto. de Física, Fac. de Ciencias.
Exotic baryon resonances in the chiral dynamics Tetsuo Hyodo a a RCNP, Osaka b ECT* c IFIC, Valencia d Barcelona Univ. 2003, December 9th A.Hosaka a, D.
Possible molecular bound state of two charmed baryons - hadronic molecular state of two Λ c s - Wakafumi Meguro, Yan-Rui Liu, Makoto Oka (Tokyo Institute.
Qiang Zhao Theory Division Institute of High Energy Physics Chinese Academy of Sciences 第十届全国粒子物理学术会议,南京, 2008 年 4 月 日 Search for Z(4430) in meson.
Beijing, QNP091 Matthias F.M. Lutz (GSI) and Madeleine Soyeur (Saclay) Irfu/SPhN CEA/ Saclay Irfu/SPhN CEA/ Saclay Dynamics of strong and radiative decays.
1 Recent Results on J/  Decays Shuangshi FANG Representing BES Collaboration Institute of High Energy Physics, CAS International Conference on QCD and.
Evidence for a new resonance S *(1380) with J P =1/2  JiaJun WU In collaboration with S. Dulat and B. S. ZOU.
1  - mesic nuclei and baryon chiral symmetry in medium Hideko Nagahiro (Nara Women’s Univ.) collaborators: Daisuke Jido (Tech. Univ. Muenchen) Satoru.
Meson and Baryon Resonances from the interaction of vector mesons Hidden gauge formalism for vector mesons, pseudoscalars and photons Derivation of chiral.
Nρρ和Δρρ三强子束缚态的研究 孙宝玺 (北京工业大学) 陈华星 (北京航空航天大学) E. Oset(西班牙Valencia大学)
Hadron excitations as resonant particles in hadron reactions
Extracting h-neutron interaction from g d  h n p data
Institute of High Energy Physics
The study of pentaquark states in the unitary chiral approach
Institute of High Energy physics KEK, Hadron physics at J-PARC, Japan
Study a0(980)-f0(980) mixing from charmonium decays
A novel probe of Chiral restoration in nuclear medium
η-mesic nucleus by d + d reaction ー how to deduce η-Nucleus int. ー
Photoproduction of K* for the study of the structure of L(1405)
E. Wang, J. J. Xie, E. Oset Zhengzhou University
Photoproduction of K* for the study of L(1405)
Charm spectroscopy 1 A. Drutskoy University of Cincinnati
Recent results on light hadron spectroscopy at BES
New insights into from U(3) chiral effective theory
Exotic charmed four-quark mesons: molecules versus compact states
Baryon Resonances Baryon ground states and excited states
Guangxi Normal University
Testing the Structure of Scalar Mesons in B Weak Decays
Decoding the riddle of Y(4260) and Zc(3900) Qiang Zhao
Shota Ohnishi (Tokyo Inst. Tech. / RIKEN)
Dibaryons at CLAS Mikhail Bashkanov.
Charm2010 4TH International Workshop on Charm Physics
d*, a quark model perspective
Deeply Bound Mesonic States -Case of Kaon-
In-medium properties of the omega meson from a measurement of
Revisiting some long-standing puzzles in charmonium decays
First discovery of Double Cabbibo-Suppressed decay: Lc  pK+p- + a
Charmonium spectroscopy above thresholds
手征夸克模型的一些应用 钟显辉 湖南师范大学物理与信息科学学院.
Signature of L(1405) in K-dpSn reaction
Meson Production reaction on the N* resonance region
HADRON 2015 XVI International Conference on Hadron Spectroscopy
Theoretical review of excited D*/Ds* mesons
Study of K-p→Lp+p-, Lp0 and γn → K+Σ*-
Low energy reaction π- p→ K0Λ and the properties of N*(1720)
B. El-Bennich, A. Furman, R. Kamiński, L. Leśniak, B. Loiseau
Recent Results of J/ and (2S) at BESII
International Conference On The Structure of Baryons
On the analytic structure of the KN - pS scattering amplitudes
Understanding DsJ*(2317) and DsJ(2460)
Heavy quark exotica and heavy quark symmetry
XIV International Conference
Remarks on mass difference between the charged and neutral K*(892)
Presentation transcript:

Three-body hadronic molecules. Kanchan Khemchandani Dept. de Física, Universidade de Coimbra. The 5-th International Conference on Quarks and Nuclear Physics, Beijing , September 21-26, 2009

In Collaboration with: Alberto Martinez Torres and Eulogio Oset IFIC-Univ. de Valencia, Spain

What kind of three-hadron systems? Meson + Meson + Meson = 3M Meson + Meson + Baryon = 2M-1B

What kind of three-hadron systems? Meson + Meson + Meson = 3M Meson + Meson + Baryon = 2M-1B

What kind of three-hadron systems? Meson + Meson + Meson = 3M Meson + Meson + Baryon = 2M-1B Attractive!!!

Why study them? (1)X(2175) in  f0 (2) Y(4260) in J/  (3) X(1576)in K*K (4) Y(4660) in J/ (2s)  (1650), (1600) in the K- p  , . Suggestions:  K N exotic states

Why study them? (1)X(2175) in  f0 (2) Y(4260) in J/  (3) X(1576)in K*K (4) Y(4660) in J/ (2s)  (1650), (1600) in the K- p  , . Suggestions:  K N exotic states BABAR Collaboration, Phys.Rev.D74:091103,2006, ,Phys.Rev.D76:012008,2007 BES Collaboration Phys.Rev.Lett.100:102003,2008

Why study them? (1)X(2175) in  f0 (2) Y(4260) in J/  (3) X(1576)in K*K (4) Y(4660) in J/ (2s)  (1650), (1600) in the K- p  , . Suggestions:  K N exotic states Belle Collaboration, PRL 99 (2007) , BABAR Collaboration, PRL 95 (2005), CLEO Collaboration PRL 96 (2006), PRD 74,(2006).

Why study them? (1)X(2175) in  f0 (2) Y(4260) in J/  (3) X(1576)in K*K (4) Y(4660) in J/ (2s)  (1650), (1600) in the K- p  , . Suggestions:  K N exotic states BES Collaboration PRL 97 (2006).

Why study them? (1)X(2175) in  f0 (2) Y(4260) in J/  (3) X(1576)in K*K (4) Y(4660) in J/ (2s)  (1650), (1600) in the K- p  , . Suggestions:  K N exotic states Guo et al. Phys.Rev.D74:097503,2006.

Why study them? (1)X(2175) in  f0 (2) Y(4260) in J/  (3) X(1576)in K*K (4) Y(4660) in J/ (2s)  (1650), (1600) in the K- p  , . Suggestions:  K N exotic states Belle Collaboration, PRL 99 (2007).

Why study them? (1)X(2175) in  f0 (2) Y(4260) in J/  (3) X(1576)in K*K (4) Y(4660) in J/ (2s)  (1650), (1600) in the K- p  , . Suggestions:  K N exotic states Guo, Hanhart and Meissner, PLB 665 (2008). Eef Van Beveren, X. Liu, R.Coimbra, G.Rupp, Europhys.Lett.85 (2009)

Why study them? Prakhov et. al. PRC 73 (2006), 74 (2004). (1)X(2175) in  f0 (2) Y(4260) in J/  (3) X(1576)in K*K (4) Y(4660) in J/ (2s)  (1650), (1600) in the K- p  , . Suggestions:  K N exotic states Prakhov et. al. PRC 73 (2006), 74 (2004).

If these states couple strongly to three-hadrons It would be difficult to see them or understand their properties in other systems

If these states couple strongly to three-hadrons It would be difficult to see them or understand their properties in other systems

If these states couple strongly to three-hadrons It would be difficult to see them or understand their properties in other systems confusion !!!

137+1405 = 1542 MeV

How do we study them? We solve the Faddeev equations in the coupled channel approach. For the two body interactions we use chiral Lagrangians. While writing the three-body equations, we find a very INTERESTING RESULT in this case!

Chiral amplitudes

Chiral amplitudes

Chiral amplitudes

Chiral amplitudes

Chiral amplitudes

All other such terms

All other such terms

Exact ANALYTIC cancellation in theSU(3) limit!!! All other such terms Exact ANALYTIC cancellation in theSU(3) limit!!! Khemchandani, Martinez Torres, oset EJA 37 (2008); Martinez Torres, Khemchandani, oset PRD 78 (2008)

Exact ANALYTIC cancellation in theSU(3) limit!!! All other such terms Exact ANALYTIC cancellation in theSU(3) limit!!! Use the onshell parts of t-matrices AND neglect the3 B forces

where

where

where

where

where

where

where

where

where

We extend the procedure for the rest of diagrams involving more than three t-matrices

We extend the procedure for the rest of diagrams involving more than three t-matrices

We extend the procedure for the rest of diagrams involving more than three t-matrices

Variables of the eqn: s, s23 We extend the procedure for the rest of diagrams involving more than three t-matrices Variables of the eqn: s, s23

Which systems did we study and what do we find? 2M-1B with S= -1

Which systems did we study and what do we find? 2M-1B with S= -1

Which systems did we study and what do we find? 2M-1B with S= -1 ,,f0  K

Which systems did we study and what do we find? 2M-1B with S= -1 ,,f0  K N (1405)

Which systems did we study and what do we find? 2M-1B with S= -1 ,,f0  K N*(1535) N (1405)

Which systems did we study and what do we find? 2M-1B with S= -1 ,,f0  K S-wave N*(1535) N (1405)

Which systems did we study and what do we find? 2M-1B with S= -1 ,,f0  K S-wave N*(1535) N (1405)

Results: 2M-1B system with S=0 Σ(1660) Σ(1620) R. Armenteros et al. Nucl. Phys. B 8, 183 (1968). B. R. Martin et al, Nucl. Phys. B 127, 349 (1977).

Γ(PDG) (MeV) Peak position (this work) Γ Isospin = 1 Σ(1560) 10-100 1590 70 Σ(1620) 1630 39 Σ(1660) 40-200 1656 30 Σ(1770) 60-100 1790 24 Isospin = 0 Λ(1600) 50-250 1568,1700 60, 136 Λ(1810) 1740 20 Martinez Torres, Khemchandani, oset, PRC Rapid Communication 77 (2008); EPJA 35 (2008).

2M-1B with S= 0 ,,f0   N N*(1535)

N*(1710) 50-250 N*(2100) 50-360 Δ(1750) 50-300 Δ(1910) 190-270 Γ(PDG) (MeV) N*(1710) 50-250 N*(2100) 50-360 Δ(1750) 50-300 Δ(1910) 190-270

 N   N Khemchandani, Martinez Torres, oset, EPJA 37 (2008). Γ(PDG) (MeV) N*(1710) 50-250 N*(2100) 50-360 Δ(1750) 50-300 Δ(1910) 190-270  N   N Khemchandani, Martinez Torres, oset, EPJA 37 (2008).

 N   N N*(1710) 50-250 N*(2100) 50-360 Δ(1750) 50-300 Δ(1910) Γ(PDG) (MeV) N*(1710) 50-250 N*(2100) 50-360 Δ(1750) 50-300 Δ(1910) 190-270  N   N

 N   N experimental amplitudes N*(1710) 50-250 N*(2100) 50-360 Γ(PDG) (MeV) N*(1710) 50-250 N*(2100) 50-360 Δ(1750) 50-300 Δ(1910) 190-270  N   N experimental amplitudes

 N   N N*(1710) 50-250 N*(2100) 50-360 Δ(1750) 50-300 Δ(1910) Γ(PDG) (MeV) N*(1710) 50-250 N*(2100) 50-360 Δ(1750) 50-300 Δ(1910) 190-270  N   N

 N   N  N*(1650) N*(1710) 50-250 N*(2100) 50-360 Δ(1750) 50-300 Γ(PDG) (MeV) N*(1710) 50-250 N*(2100) 50-360 Δ(1750) 50-300 Δ(1910) 190-270  N   N  N*(1650)

 N   N  N*(1650)  K N*(1710) 50-250 N*(2100) 50-360 Δ(1750) Γ(PDG) (MeV) N*(1710) 50-250 N*(2100) 50-360 Δ(1750) 50-300 Δ(1910) 190-270  N   N  N*(1650)  K

 N   N  N*(1650)  K N*(1710) 50-250 N*(2100) 50-360 Δ(1750) Γ(PDG) (MeV) N*(1710) 50-250 N*(2100) 50-360 Δ(1750) 50-300 Δ(1910) 190-270  N   N  N*(1650)  K

Martinez Torres, Khemchandani , Oset PRC 79 (2009) Γ(PDG) (MeV) N*(1710) 50-250 N*(2100) 50-360 Δ(1750) 50-300 Δ(1910) 190-270  N   N  N*(1650)  K + A new N*(1920)  predicted by Jido and Y. Kanada-En’yo PRC78:035203,2008

exptl study going on at spring8 Indeed, there is a peak in the cross sections for the γp → K+ reaction at around 1920 MeV! And suggestions of existence of a new resonance around 1920 MeV was made by several groups: (see: Testing the three-hadron nature of the N*(1920) resonance: A. Martinez Torres, K.P. Khemchandani, Ulf-G. Meissner, E. Oset arXiv:0902.3633 [nucl-th] ) We suggest to study γ p → K+ K− p reaction to test the nature of this resonance exptl study going on at spring8 Ref: CLAS Collaboration, PRC 73, 035202 (2006) [arXiv:nucl-ex/0509033].

Khemchandani, Martinez Torres, Oset PLB 675 (2009). 2M-1 B system with S=1 study of the possibility that the  KN could be a + bound state. We do not find any signal around 1520 MeV but we obtain a peak around 1700 MeV with 200 MeV of width.  N Khemchandani, Martinez Torres, Oset PLB 675 (2009).

3M systems

3M systems BaBar BES

3M systems

3M systems

Martinez Torres, Khemchandani, Oset PRD 78 (2008). 3M systems Martinez Torres, Khemchandani, Oset PRD 78 (2008).

3M systems Y(4260) 1--  strong coupling to J/ Enhancement near 1 GeV in the  invariant mass M(J/) + M(f0(980)) +200 MeV  4260 MeV. V(J/(K) J/(K)) = 0, proceeds through D*D and coupled channels (like in  (K)). Calculations of J/ and J/KK  dynamical generation of a resonance near the mass of the Y(4260)(Martinez Torres, Khemchandani,Oset, arxiv: 0906.5333)

Summary and Future plans Systems studied so far: 2M-1B with S= -1  Evidence for known 4  and two  resonances 2M-1B with S= 0  (a) Evidence for 2 N* and one  resonance. (b) prediction of a new N* around 1920 MeV. 2M-1B with S= 1  (a) No evidence for a state around 1540 MeV. (b) found a broad peak around 1700 MeV.

Summary and Future plans Systems studied so far: 3M (two pseudoscalar-1vector)  (a)  and KK  X(2175) (b) J/ and J/ KK  Y(4260) System under study: K*K, ,   to look for X(1576) and other low lying vector meson resonances. Next projects: 2baryon-1meson, 2 vector-1pseudoscalar, 3 pseudoscalars and ….