Adrian Jäggi 24th IUGG General Assembly, July, Perugia

Slides:



Advertisements
Similar presentations
TNO orbit computation: analysing the observed population Jenni Virtanen Observatory, University of Helsinki Workshop on Transneptunian objects - Dynamical.
Advertisements

GRACE GRAVITY FIELD SOLUTIONS USING THE DIFFERENTIAL GRAVIMETRY APPROACH M. Weigelt, W. Keller.
A quick GPS Primer (assumed knowledge on the course!) Observables Error sources Analysis approaches Ambiguities If only it were this easy…
ESA Living Planet Symposium, Bergen, Norway, 27 June-2 July S. Casotto, F. Panzetta Università di Padova, Italy and GOCE Italy Consortium Sponsored.
Limits of static processing in a dynamic environment Matt King, Newcastle University, UK.
Space Weather influence on satellite based navigation and precise positioning R. Warnant, S. Lejeune, M. Bavier Royal Observatory of Belgium Avenue Circulaire,
CHAMP Gravity Field Models using Precise Orbits by C.C.Tscherning & E.Howe Department of Geophysics University of Copenhagen, Denmark 2. CHAMP Science.
COMBINED MODELING OF THE EARTH’S GRAVITY FIELD FROM GOCE AND GRACE SATELLITE OBSERVATIONS Robert Tenzer 1, Pavel Ditmar 2, Xianglin Liu 2, Philip Moore.
CHAMP Satellite Gravity Field Determination Satellite geodesy Eva Howe January
RESEARCH POSTER PRESENTATION DESIGN © This research is based on the estimation of the spherical harmonic geopotential.
IGS Analysis Center Workshop, Miami Beach, 2-6 June 2008 M. Fritsche, R. Dietrich, A. Rülke Institut für Planetare Geodäsie (IPG), Technische Universität.
Effects of ionospheric small- scale structures on GNSS G. WAUTELET Royal Meteorological Institute of Belgium Ionospheric Radio Systems & Techniques (IRST)
ESA Living Planet Symposium, Bergen, T. Gruber, C. Ackermann, T. Fecher, M. Heinze Institut für Astronomische und Physikalische Geodäsie (IAPG)
1 LAVAL UNIVERSITY DEPARTMENT OF GEOMATICS Mohammed Boukhecha (Laval University) Marc Cocard (Laval University) René Landry (École technique supérieure.
Titelmaster Geometrical and Kinematical Precise Orbit Determination of GOCE Akbar Shabanloui Institute of Geodesy and Geoinformation, University of Bonn.
Hydrological mass changes inferred from high-low satellite- to-satellite tracking data Tonie van Dam, Matthias Weigelt Mohammad J. Tourian Nico Sneeuw.
Compatibility of Receiver Types for GLONASS Widelane Ambiguity Resolution Simon Banville, Paul Collins and François Lahaye Geodetic Survey Division, Natural.
SVY 207: Lecture 13 Ambiguity Resolution
GOCE Workshop at ESA LP Symposium, Bergen, 29./30.June, 2010 Precise Science Orbits for the GOCE Satellite – Aiming at the cm-level H. Bock 1, A. Jäggi.
1 Average time-variable gravity from GPS orbits of recent geodetic satellites VIII Hotine-Marussi Symposium, Rome, Italy, 17–21 June 2013 Aleš Bezděk 1.
Surveying with the Global Positioning System Phase Observable.
A Geodesist’s View of the Ionosphere Gerald L. Mader National Geodetic Survey Silver Spring, MD.
Rapid and Precise Orbit Determination for the GOCE Satellite P. Visser, J. van den IJssel, T. van Helleputte, H. Bock, A. Jäggi, U. Meyer, G. Beutler,
GALOCAD GAlileo LOcal Component for nowcasting and forecasting Atmospheric Disturbances R. Warnant*, G. Wautelet*, S. Lejeune*, H. Brenot*, J. Spits*,
PPP Workshop: Reaching Full Potential
Geocenter Variations Derived from GRACE Data Z. Kang, B. Tapley, J. Chen, J. Ries, S. Bettadpur Joint International GSTM and SPP Symposium GFZ Potsdam,
EGU General Assembly 2011, 3 rd – 8 th April 2011, Vienna, Austria EGU EIGEN-6 A new combined global gravity field model including GOCE data from.
OSTST Meeting, Hobart, Australia, March 12-15, 2007 EIGEN-5 activities in GFZ and GRGS R. Biancale, J.-M. Lemoine, S. Bruinsma, S. Loyer* CNES/GRGS Toulouse,
1 SVY 207: Lecture 12 Modes of GPS Positioning Aim of this lecture: –To review and compare methods of static positioning, and introduce methods for kinematic.
Full Resolution Geoid from GOCE Gradients for Ocean Modeling Matija Herceg & Per Knudsen Department of Geodesy DTU Space living planet symposium 28 June.
Lecture 7 – Gravity and Related Issues GISC February 2008.
International Association of Geodesy Apr 17, GGOS2020 – Chapter 10 G. Beutler Astronomical Institute, University of Bern EGU Assembly Vienna April.
SVY207: Lecture 10 Computation of Relative Position from Carrier Phase u Observation Equation u Linear dependence of observations u Baseline solution –Weighted.
1 Satellite geodesy (ge-2112) Processing of observations E. Schrama.
ESA living planet symposium Bergen Combination of GRACE and GOCE in situ data for high resolution regional gravity field modeling M. Schmeer 1,
Mayer-Gürr et al.ESA Living Planet, Bergen Torsten Mayer-Gürr, Annette Eicker, Judith Schall Institute of Geodesy and Geoinformation University.
OSTST Meeting, Hobart, Australia, March 12-15, 2007 On the use of temporal gravity field models derived from GRACE for altimeter satellite orbit determination.
4.Results (1)Potential coefficients comparisons Fig.3 FIR filtering(Passband:0.005~0.1HZ) Fig.4 Comparison with ESA’s models (filter passband:0.015~0.1HZ)
Astronomical Institute University of Bern Astronomical Institute, University of Bern Swarm Gravity Field Results with the CMA Adrian Jäggi, Daniel Arnold,
Relative positioning with Galileo E5 AltBOC code measurements DEPREZ Cécile Dissertation submitted to the University of Liège in partial requirements for.
An oceanographic assessment of the GOCE geoid models accuracy S. Mulet 1, M-H. Rio 1, P. Knudsen 2, F. Siegesmund 3, R. Bingham 4, O. Andersen 2, D. Stammer.
Astronomical Institute University of Bern 1 Astronomical Institute, University of Bern, Switzerland 2 German Research Centre for Geosciences, Potsdam,
How Do we Estimate Gravity Field? Terrestrial data –Measurements of surface gravity –Fit spherical harmonic coefficients Satellite data –Integrate equations.
Investigations on (radial) offsets between different Swarm orbit solutions 8 September th Swarm Data Quality Workshop, IPGP, Paris Heike Peter (PosiTim),
Astronomisches Institut der Universität Bern Global Navigation Satellite Systems for Positioning and Time Transfer T. Schildknecht, A. Jäggi R. Dach, G.
Limits of static processing in a dynamic environment Matt King, Newcastle University, UK.
Astronomical Institute University of Bern 1 Astronomical Institute, University of Bern, Switzerland * now at PosiTim, Germany 5th International GOCE User.
Limits of static processing in a dynamic environment Matt King, Newcastle University, UK.
Aurore Sibois and Shailen Desai
ACC/GPSR Splinter Summary
Model evaluation with low-altitude GOCE densities
ACC and GPS summary Christian Siemes, QWG and Cal/Val team Copenhagen, Denmark 18/06/2014.
Global Navigation Satellite Systems for Positioning and Time Transfer
EGU2007-A-10154, NP6.04 Tuesday 17 of April, Vienna 2007
Summary of part of L2 session
Introduction to geodesy & accelerometry with Swarm
Dynamic Planet 2005 Cairns, Australia August 2005
Consistent Ocean Mass Time Series from LEO Potential Field Missions
ASEN 5070: Statistical Orbit Determination I Fall 2015
R. Warnant*, G. Wautelet*, S. Lejeune*, H. Brenot*,
TEST OF GOCE EGG DATA FOR SPACECRAFT POSITIONING
Track Output Interpretation
Troposphere and Clock Parameterization During Continuous VLBI Campaigns Kamil Teke1, 2, Johannes Boehm1, Hana Spicakova1, Andrea Pany1, Harald Schuh1 1.
X SERBIAN-BULGARIAN ASTRONOMICAL CONFERENCE 30 MAY - 3 JUNE, 2016, BELGRADE, SERBIA EARTH ORIENTATION PARAMETERS AND GRAVITY VARIATIONS DETERMINED FROM.
Effects and magnitudes of some specific errors
Track Output Interpretation
Martin Pitoňák1, Michal Šprlák2 and Pavel Novák1
Daniel Rieser, Christian Pock, Torsten Mayer-Guerr
GPS: GLOBAL POSITIONING SYSTEM Satellites transmit radio signals Receivers on ground record signals and find their position from the time the signals arrive.
Agenda Background and Motivation
Presentation transcript:

Adrian Jäggi 24th IUGG General Assembly, 02-13 July, Perugia Assessment of GPS Observables for Gravity Field Recovery from GRACE Adrian Jäggi 24th IUGG General Assembly, 02-13 July, Perugia Astronomisches Institut, Universität Bern

Recovery from LEO hl-SST Data (1) Kinematic Orbit Positions Pseudo-Observations with Covariance Information Accelerometer Data (not used) Accelerometer Data (not used) Set-Up of an Orbit Determination Problem by Least-Squares computation of the observation equations for each daily arc by numerical integration (estimated parameters: SH coefficients, arc-specific parameters, e.g., initial conditions and pulses) - construction of the normal equations for each daily arc Manipulation of Normal Equation Systems manipulation and subsequent pre-elimination of arc-specific parameters (e.g., constraining or downsampling of pulses) - accumulation of the daily normal equations into weekly, monthly, and yearly systems regularization of SH coefficients (not used so far) inversion of the resulting normal equation systems Manipulation of Normal Equation Systems manipulation and subsequent pre-elimination of arc-specific parameters (e.g., constraining or downsampling of pulses) - accumulation of the daily normal equations into weekly, monthly, and yearly systems regularization of SH coefficients (not used so far) inversion of the resulting normal equation systems Astronomisches Institut, Universität Bern

Recovery from LEO hl-SST Data (2) CHAMP Kinematic Orbits 1 year of data (DOY 071, 2002 – DOY 070, 2003) Jäggi, A., G. Beutler, H. Bock, U. Hugentobler 2006: Kinematic and highly reduced-dynamic LEO orbit determination for gravity field estimation, in Dynamic Planet – Monitoring and Understanding a Dynamic Planet with Geodetic and Oceanographic Tools, edited by C. Rizos and P. Tregoning, pp. 354-361, Springer. GRACE Kinematic Orbits 1 year of data (DOY 001, 2003 – DOY 365, 2003) Jäggi, A., U. Hugentobler, H. Bock, G. Beutler 2007: Precise Orbit Determination for GRACE Using Undifferenced or Doubly Differenced GPS Data, Advances in Space Research, in press, available online at http://dx.doi.org/10.1016/j.asr.2007.03.012. GRACE Kinematic Baselines 55 days of data (DOY 243, 2003 – DOY 297, 2003) Jäggi, A., U. Hugentobler, H. Bock, G. Beutler 2007: Precise Orbit Determination for GRACE Using Undifferenced or Doubly Differenced GPS Data, Advances in Space Research, in press, available online at http://dx.doi.org/10.1016/j.asr.2007.03.012. Astronomisches Institut, Universität Bern

Difference w.r.t. EIGEN-GL04C Recovery from LEO hl-SST Data (3) Difference w.r.t. EIGEN-GL04C Observations: 30s positions Data Period: 1 year Accelerometer: not used Pulses: 15min Astronomisches Institut, Universität Bern

Cumulative Geoid Height Differences (in cm) w.r.t. EIGEN-GL04C Recovery from LEO hl-SST Data (4) Cumulative Geoid Height Differences (in cm) w.r.t. EIGEN-GL04C GPS Smp: 30s Pos Smp: L. Prange et al. Gravity Field Determination at the AIUB – The Celestial Mechanics Approach Astronomisches Institut, Universität Bern

GPS Carrier Phase hl-SST Observables (1) carrier phase measurement on P1 channel (λ = 19.0 cm) L2 carrier phase measurement on P2 channel (λ = 24.4 cm) LA carrier phase measurement on C/A channel (λ = 19.0 cm, σ(LA) < σ(L1) for BlackJack receivers) The ionosphere-free observable may be formed as L3 = α1*L1+α2*L2 or L3‘ = α1*LA+α2*L2 L3‘ is better for BlackJack receivers w.r.t. the noise Astronomisches Institut, Universität Bern

Difference w.r.t. EIGEN-GL04C GPS Carrier Phase hl-SST Observables (2) Difference w.r.t. EIGEN-GL04C Observations: 30s positions Data Period: 1 year Accelerometer: not used Pulses: 15min Astronomisches Institut, Universität Bern

GRACE Carrier Phase hl-SST Observables (1) KBR RMS: 6.38 mm 15.91 mm Kinematic (DD, float) Reduced-Dynamic (DD, float) KBR RMS: 10.90 mm 20.50 mm Kinematic (ZD) Reduced-Dynamic (ZD) KBR RMS: 0.88 mm 4.41 mm Reduced-Dynamic (DD, fixed) Kinematic (DD, fixed) Astronomisches Institut, Universität Bern

Difference w.r.t. EIGEN-GL04C GRACE Carrier Phase hl-SST Observables (2) Difference w.r.t. EIGEN-GL04C Observations: varied Data Period: 55d Accelerometer: not used Pulses: 15min Astronomisches Institut, Universität Bern

Difference w.r.t. EIGEN-GL04C GRACE Carrier Phase hl-SST Observables (3) Difference w.r.t. EIGEN-GL04C Observations: 30s pos. diff. Data Period: 55d Accelerometer: not used Pulses: 15min Astronomisches Institut, Universität Bern

GRACE Carrier Phase hl-SST Observables (4) “normal” KBR RMS: 14.41 mm 5.78 mm KBR RMS: 6.10 mm “time-differenced” Astronomisches Institut, Universität Bern

Conclusions Gravity Field Recovery from CHAMP and GRACE hl-SST data has successfully been initiated at the AIUB. General Results are comparable with others LA vs. L1 LA should be used for the recovery No improvement for low degrees Small benefit for very high degrees Low degrees have to be improved Ambiguity Resolution hardly helps Affects expectations, e.g., for SWARM Single Satellites vs. Space Baseline Astronomisches Institut, Universität Bern