Observing the formation and evolution of massive galaxies

Slides:



Advertisements
Similar presentations
Kinematics/Dynamics  Chemistry/dust  Stellar populations  Searches for z ~ 6-7 « Hot » scientific researches at VLT in cosmology Mass Galaxy formation/gas.
Advertisements

Searching for massive galaxy progenitors with GMASS (Galaxy Mass Assembly ultradeep Spectroscopic Survey) (a progress report) Andrea Cimatti (INAF-Arcetri)
September 6— Starburst 2004 at the Institute of Astronomy, Cambridge Constraints on Lyman continuum flux escaping from galaxies at z~3 using VLT.
Star formation at high redshift (2 < z < 7) Methods for deriving star formation rates UV continuum = ionizing photons (dust obscuration?) Ly  = ionizing.
THE MODERATELY LARGE SCALE STRUCTURE OF QUASARS
SFR and COSMOS Bahram Mobasher + the COSMOS Team.
A Wide Area Survey for High- Redshift Massive BzK Galaxies X.Kong, M.Onodera, C.Ikuta (NAOJ), K.Ohta (Kyoto), N.Tamura (Durham), A.Renzini, E.Daddi, L.
C. Halliday, A. Cimatti, J. Kurk, M. Bolzonella, E. Daddi, M. Mignoli, P. Cassata, M. Dickinson, A. Franceschini, B. Lanzoni, C. Mancini, L. Pozzetti,
Venice – March 2006 Discovery of an Extremely Massive and Evolved Galaxy at z ~ 6.5 B. Mobasher (STScI)
Cosmological formation of elliptical galaxies * Thorsten Naab & Jeremiah P. Ostriker (Munich, Princeton) T.Naab (USM), P. Johannson (USM), J.P. Ostriker.
Optical Spectroscopy of Distant Red Galaxies Stijn Wuyts 1, Pieter van Dokkum 2 and Marijn Franx 1 1 Leiden Observatory, P.O. Box 9513, 2300RA Leiden,
The Evolution of Quasars and Massive Black Holes “Quasar Hosts and the Black Hole-Spheroid Connection”: Dunlop 2004 “The Evolution of Quasars”: Osmer 2004.
Black Hole Growth and Galaxy Evolution Meg Urry Yale University.
Past, Present and Future Star Formation in High Redshift Radio Galaxies Nick Seymour (MSSL/UCL) 22 nd Nov Powerful Radio Galaxies.
Culling K-band Luminous, Massive Star Forming Galaxies at z>2 X.Kong, M.Onodera, C.Ikuta (NAOJ),K.Ohta (Kyoto), N.Tamura (Durham),A.Renzini, E.Daddi (ESO),
Gamma-ray Burst Afterglow Spectroscopy J. P. U. Fynbo, Niels Bohr Institute / Dark Cosmology Centre.
Conference “Summary” Alice Shapley (Princeton). Overview Multitude of new observational, multi-wavelength results on massive galaxies from z~0 to z>5:
HIGH REDSHIFT GALAXIES and COSMOLOGY SUMMARY. RESOLUTION > (IGM metals, molecules, constants) ( would be fine too – turbulence?
Next generation redshift surveys with the ESO-VLT
The Extremely Red Objects in the CLASH Fields The Extremely Red Galaxies in CLASH Fields Xinwen Shu (CEA, Saclay and USTC) CLASH 2013 Team meeting – September.
1 VVDS: Towards a complete census of star formation at 1.4
The Future of Direct Supermassive Black Hole Mass Measurements Dan Batcheldor Rochester Institute of Technology - The Role of SMBHs measurements. - Current.
Nearby and distant galaxies from ORM and CAHA: the next decade Patricia Sánchez-Blázquez (Universidad Autónoma de Madrid)
Scaling relations of spheroids over cosmic time: Tommaso Treu (UCSB)
“Nature and Descendants of Sub-mm and Lyman-break Galaxies in Lambda-CDM” Juan Esteban González Collaborators: Cedric Lacey, Carlton Baugh, Carlos Frenk,
Reconstructing the formation of massive early-type galaxies from their SHARDS Pablo G. Pérez-González SHARDS Team: A. Cava, G. Barro, M. Balcells, N. Cardiel,
With: V. Smolcic, A. Karim,, B. Magnelli, A.Zirm, M. Michalowski, P. Capak, K. Sheth, K. Schawinski, S. Wuyts, D. Sanders, A. Man, D. Lutz, J. Staguhn,
Modeling the dependence of galaxy clustering on stellar mass and SEDs Lan Wang Collaborators: Guinevere Kauffmann (MPA) Cheng Li (MPA/SHAO, USTC) Gabriella.
How do galaxies accrete their mass? Quiescent and star - forming massive galaxies at high z Paola Santini Roman Young Researchers Meeting 2009 July 21.
Cosmos Survey PI Scoville HST 590 orbits I-band 2 deg. 2 !
Models & Observations galaxy clusters Gabriella De Lucia Max-Planck Institut für Astrophysik Ringberg - October 28, 2005.
Gas Accretion and Secular Processes 1  How much mass assembled in mergers?  How much through gas accretion and secular evolution? Keres et al 2005, Dekel.
Submm galaxies and EROs: Expectations for FMOS in the light of OHS observations Chris Simpson (University of Durham)
Clustering and dusty high-z galaxies Emanuele Daddi ESO-Garching (  NOAO-Tucson) Properties of K-selected z=2 galaxies (K20/GOODS/other surveys)  dusty.
How do galaxies accrete their mass? Quiescent and star - forming massive galaxies at high z Paola Santini THE ORIGIN OF GALAXIES: LESSONS FROM THE DISTANT.
SWIRE view on the "Passive Universe": Studying the evolutionary mass function and clustering of galaxies with the SIRTF Wide-Area IR Extragalactic Survey.
Galaxy evolution at high z from mass selected samples. Adriano Fontana (INAF Rome Obs) Thanks to: E. Giallongo, N. Menci, A. Cavaliere, Donnarumma,
Evidence for a Population of Massive Evolved Galaxies at z > 6.5 Bahram Mobasher M.Dickinson NOAO H. Ferguson STScI M. Giavalisco, M. Stiavelli STScI Alvio.
Big Bang f(HI) ~ 0 f(HI) ~ 1 f(HI) ~ History of Baryons (mostly hydrogen) Redshift Recombination Reionization z = 1000 (0.4Myr) z = 0 (13.6Gyr) z.
KASI Galaxy Evolution Journal Club A Massive Protocluster of Galaxies at a Redshift of z ~ P. L. Capak et al. 2011, Nature, in press (arXive: )
Star Forming Proto-Elliptical z>2 ? N.Arimoto (NAOJ) Subaru/Sup-Cam C.Ikuta (NAOJ) X.Kong (NAOJ) M.Onodera (Tokyo) K.Ohta (Kyoto) N.Tamura (Durham)
Competitive Science with the WHT for Nearby Unresolved Galaxies Reynier Peletier Kapteyn Astronomical Institute Groningen.
What can we learn from High-z Passive Galaxies ? Andrea Cimatti Università di Bologna – Dipartimento di Astronomia.
What is EVLA? Giant steps to the SKA-high ParameterVLAEVLAFactor Point Source Sensitivity (1- , 12 hr.)10  Jy1  Jy 10 Maximum BW in each polarization0.1.
Sample expanded template for one theme: Physics of Galaxy Evolution Mark Dickinson.
ESO The other side of galaxy formation: radio line and continuum ‘Great Surveys’ Santa Fe November 2008 Chris Carilli NRAO.
The Genesis and Star Formation Histories of Massive Galaxies Sept 27, 2004 P. J. McCarthy MGCT Carnegie Observatories.
Maracalagonis, 24/05/ Semi-Analytic Modeling of Galaxy Formation PhD student: Elena Ricciardelli Supervisor: prof. Alberto Franceschini.
Julia Bryant HECTOR project scientist Australian Astronomical Observatory University of Sydney CAASTRO With Joss Bland-Hawthorn, Jon Lawrence, Scott Croom.
Galaxy Evolution and WFMOS
Stellar Populations Science Knut Olsen. The Star Formation Histories of Disk Galaxies Context – Hierarchical structure formation does an excellent job.
Spheroid and Black Hole formation at high z
Stellar Populations at intermediate redshift Survey with WEAVE
Galaxy Evolution from z=2 to the present
Resolving the black hole - nuclear cluster - spheroid connection
SINFONI observations of massive galaxies from the GMASS sample at z~2
What is EVLA? Build on existing infrastructure, replace all electronics (correlator, Rx, IF, M/C) => multiply ten-fold the VLA’s observational capabilities.
The Presence of Massive Galaxies at z>5
Extra-galactic blank field surveys with CCAT
Emanuele Daddi ESO K20 survey PI: A Cimatti (Arcetri) Collaborators:
HERSCHEL and Galaxies/AGN “dust and gas”
‘3D’ Data Sets are ABSOLUTELY Crucial to Answer the Important Questions of Galaxy Formation and Evolution Galaxy dynamical masses, gas masses Spatially.
A Population of Old and Massive Galaxies at z > 5
The SAURON Survey - The stellar populations of early-type galaxies
The dust attenuation in the galaxy merger Mrk848
Specific Star Formation Rates to z=1.5
低金属量銀河の星形成モード (Nagoya University) L. K. Hunt (Firenze)
Black Holes in the Deepest Extragalactic X-ray Surveys
Quenching of the star formation activity in cluster galaxies
The SINS survey of galaxy kinematics at z~2 : turbulent thick disks and evidence for rapid secular evolution Reinhard Genzel, Natascha Förster Schreiber,
Presentation transcript:

Observing the formation and evolution of massive galaxies Andrea Cimatti University of Bologna – Department of Astronomy “Towards the science case for E-ELT HIRES” – IoA, Cambridge, 13-14 September 2012

Why ? Physical processes of mass assembly Pozzetti et al. 2010 50% mass built Physical processes of mass assembly Crucial test for mass assembly history in ΛCDM cosmology Cosmological applications with passive ellipticals Why ?

Early-Type Galaxies (ETGs): solid results at z<1 Oldest, passive, most massive Downsizing evolution Nearly constant number density

(I) (II) (III) sSFR Schematic Evolution of Massive Galaxies Redshift (SFR/M*) Star-forming (I) AGN Post Starburst (II) E/S0 Quiescent /Passive (III) 0 1 2 3 4 5 Redshift

Phase I – The star-forming precursors at z ≥ 2 ? Daddi et al. 2004 Halliday et al. 2008 Tecza et al. 2004 Shapiro et al. 2009 Dusty EROs, sBzK, DRGs, SMGs, ULIRGs… SFR up to ~ 200+ Msun/yr SFR – M* correlation M* up to ~ 1011 Msun High sSFR Nearly solar gas metallicity for most massive ones Massive disks or mergers M(cold gas) ~ 1010-11 Msun (from CO) Higher gas fraction than at z=0 M(dust) ~ 108-9 Msun SMGs : compact and dense (size : 1-2 kpc) Fraction of AGN increases with mass Strongly clustered (r0 ~ 8-11 h-1 Mpc) Tacconi et al. 2008

Phase II and III – From Post-starburst to Passive Gobat et al. 2012 z=2.99 HST+WFC3 z=2.04 (Toft et al. 2012, VLT+X-shooter) z(spec)max ~ 3 Low sSFR to passive Ages >1- 3 Gyr, Z ≈ ZSun ? zform>2–4 τ ≈ 0.1 – 0.3 Gyr M* up to ~1011.5 M⊙ 3x smaller (10x denser) than @z~0 HST+ACS Cimatti et al. 2008 Whitaker et al. 2011 Cimatti et al. 2008, VLT+FORS2 1.4<z<2 (Onodera et al. 2012, Subaru+MOIRCS)

Passive galaxies at even higher redshifts ? z J H K 3.6 μm 4.5μm 5.8μm 8.0μm 24μm dusty passive? Rodighiero et al. 2007 Dominguez-Sanchez et al. 2011 Photometric candidates 3 < z < 6(?!) 10.8 < log M* < 11.5 M⊙ Ages ~ 0.2 – 0.8 Gyr AV ~ 0 – 1 IRAC 3 -8 μm K(AB) ~ 22-24 => EELT + JWST ! Dunlop et al. 2006, Brammer et al. 2006, Wiklind et al. 2007, Mancini et al. 2008, Fontana et al. 2009, Marchesini et al. 2010

Main Open Questions Precursors ? Formation mechanism(s) ? Size Growth ? Mass growth ? Mode(s) and suppression of star formation ? Role of AGN ? Fit into ΛCDM scenario of structure formation ?

Current limitations - Generally faint targets K ≈ 20-23+ (AB) Current limitations - Generally faint targets - Passive: red continuum, no emission lines - Optical and NIR spectra needed - R>5000-10,000: challenging or impossible Passive ETG VLT + FORS2 ~30h integration K ~ 21.5 (AB) I~ 25 z=2.04 (Toft et al. 2012, VLT+X-shooter) VLT + X-shooter K ~ 20.2 (AB) J ~ 20.9 R~ 23.5 B ~ 24.8

Requirement Why ? Main Science Spectral Coverage Spectral Resolution Simultaneous Optical (λmin ~0.35 μm for Lyα at z=2) + YJHK Several science cases Stellar populations, emission line ratios, extinction, metallicity, star formation, SFH, AGN… Spectral Resolution (~1000 ?) – 10,000 R~1000: identification and characterization of faint rare targets from wide-field surveys (e.g. Euclid) Mergers, scaling relations, kinematics, feedback, stellar & ISM absorption lines (e.g. metallicity, cold flows, …) Multiplexing FoV ~ 30”+ (diameter) N ~ 10+ BzK galaxies in the field: sBzK: 0.3-1.5 arcmin-2 to K~21.2-22.7(AB) pBzK: 0.1 arcmin-2 to K~21.2-21.7(AB) Densities up to 10x in densest environments Protoclusters High-density fields around AGNs Galaxy gaseous halos connection with IGM AO Moderate (at most) Galaxy sizes ~0.1” - 1” S/N for small targets Fiber vs Slit Narrow slits (e.g. 0.3”) IFU Desirable Internal properties Kinematics, gradients Sensitivity K(AB)=22, seeing limited, 0.8” seeing, 0.8” slit, point source, R=10,000, R(S/N)=0,4” S/N~10 in 4h (ETC V2.14) K(AB)=24.0 R=1000(0) 4(40)h to reach S/N=5

Wide spectral range needed Example of JHK spectrum Submm-selected starburst galaxy at z=2.56 VLT+SPIFFI K ~20 (AB) Example of JHK spectrum Wide spectral range needed Tecza et al. 2004 Example of optical + JHK spectrum Compact quiescent galaxy at z=1.8 VLT+ X-shooter van de Sande et al. 2011

Intermediate spectral resolution needed Example of optical spectroscopy of star-forming galaxies at z≈ 2 VLT + FORS2 + grism 300V equivalent to 800 hours integration ! Intermediate spectral resolution needed GMASS; Halliday et al. 2008

Examples of MOS benefits (I) Overdensity around radio galaxy at z = 2.2 (Miley et al. 2006) Protocluster at z = 2.07 (Gobat et al. 2011) Kurk et al. 2009 passive ETG triplet in a protocluster at z=1.61 1.4’ 21”

Examples of MOS benefits (II) Giavalisco et al. 2011 15” Cold (T~104 K), chemically young gas seen in absorption in an overdensity of galaxies at z=1.6 using spectra of background LBGs at z>3 The gas does not belong to galaxies,but it is diffuse Large scale infall motion ? Accretion of cold gas onto galaxies ? Feeding star formation ? GMASS

Conclusions EELT+HIRES VLT Key and broad science case Wide range of galaxy properties => Multi-purpose instrument VLT EELT+HIRES R ~ 10,000 (1000?) Simultaneous Optical + YJHK MOS Moderate AO + slit