Primary estimation of CEPC beam dilution and beam halo

Slides:



Advertisements
Similar presentations
Halo calculations in ATF DR Dou Wang (IHEP), Philip Bambade (LAL), Kaoru Yokoya (KEK), Theo Demma (LAL), Jie Gao (IHEP) FJPPL-FKPPL Workshop on ATF2 Accelerator.
Advertisements

Intra-Beam scattering studies for CLIC damping rings A. Vivoli* Thanks to : M. Martini, Y. Papaphilippou *
IBS and Touschek studies for the ion beam at the SPS F. Antoniou, H. Bartosik, Y. Papaphilippou, T. Bohl.
CEPC parameter choice and partial double ring design
Interaction region design for the partial double ring scheme
CEPC APDR Study Zhenchao LIU
HOM coupler design and collective instability study
Design study of CEPC Alternating Magnetic Field Booster
100km CEPC parameter and lattice design
The Studies of Dynamic Aperture on CEPC
CEPC Superconducting RF System Design
CEPC parameter optimization and lattice design
The 13th Symposium on Accelerator Physics
Cavity-beam interaction and Longitudinal beam dynamics for CEPC DR&APDR 宫殿君
Issues in CEPC pretzel and partial double ring scheme design
IntraBeam Scattering Calculation
Luminosity Optimization for FCC-ee: recent results
Update of Damping Ring parameters
Optimization of CEPC Dynamic Aperture
Lattice design for CEPC PDR
Status of CEPC lattice design
CEPC Booster Design Dou Wang, Chenghui Yu, Tianjian Bian, Xiaohao Cui, Chuang Zhang, Yudong Liu, Na Wang, Daheng Ji, Jiyuan Zhai, Wen Kang, Cai Meng, Jie.
Lattice design for CEPC PDR
Beam Loading Effect in CEPC APDR
CEPC-SppC Accelerator CDR Copmpletion at the end of 2017
CEPC APDR SRF and beam dynamics study
The design of interaction region
DA study for CEPC Main Ring
DA Study for the CEPC Partial Double Ring Scheme
CEPC APDR SRF considerations(3)
Hongbo Zhu (IHEP, Beijing) On behalf of the CEPC Study Group
Some CEPC SRF considerations
CEPC partial double ring scheme and crab-waist parameters
CEPC Injector Damping Ring
CEPC parameter optimization and lattice design
Interaction region design for the partial double ring scheme
CEPC partial double ring scheme and crab-waist parameters
Comparison of the final focus design
LHC (SSC) Byung Yunn CASA.
Lattice design for the CEPC collider ring
CEPC APDR and PDR scheme
CEPC partial double ring FFS design
CEPC advanced partial double ring scheme
CEPC partial double ring FFS design
Lattice design for the CEPC collider ring
CEPC parameter optimization and lattice design
CEPC DA optimization with downhill Simplex
CEPC Partial Double Ring Lattice Design and DA Study
Update of DA Study for the CEPC Partial Double Ring Scheme
CEPC parameter optimization and lattice design
CEPC APDR SRF considerations(4) -LEP Cavity Voltage &BBU
CEPC parameter and DA optimization
Update of Lattice Design for CEPC Main Ring
CEPC Partial Double Ring Parameter Update
CEPC optics and booster optics
Update of Lattice Design for CEPC Main Ring
Lattice design for double ring scheme of CEPC main ring
Update of lattice design for CEPC main ring
CEPC APDR SRF and beam dynamics study
CEPC SRF System Jiyuan Zhai
Lattice design and dynamic aperture optimization for CEPC main ring
Simulation check of main parameters (wd )
Lattice design for CEPC PDR
Lattice design for CEPC
CEPC APDR and PDR scheme
CEPC SRF Parameters (100 km Main Ring)
Lattice design for CEPC PDR
RF Parameters for New 2.2 km MEIC Design
MEIC Alternative Design Part III
CEPC Parameter /DA optimization with downhill Simplex
Presentation transcript:

Primary estimation of CEPC beam dilution and beam halo Dou Wang April. 28th, 2017

parameters for CEPC double ring (wangdou20170426-100km_2mmy)   Pre-CDR Higgs W Z Number of IPs 2 Energy (GeV) 120 80 45.5 Circumference (km) 54 100 SR loss/turn (GeV) 3.1 1.67 0.33 0.034 Half crossing angle (mrad) 16.5 Piwinski angle 3.19 5.69 4.29 11.77 Ne/bunch (1011) 3.79 0.968 0.365 0.455 0.307 Bunch number 50 412 5534 21300 2770 Beam current (mA) 16.6 19.2 97.1 465.8 408.7 SR power /beam (MW) 51.7 32 16.1 1.4 Bending radius (km) 6.1 11 Momentum compaction (10-5) 3.4 1.14 4.49 IP x/y (m) 0.8/0.0012 0.171/0.002 0.171 /0.002 0.16/0.002 Emittance x/y (nm) 6.12/0.018 1.31/0.004 0.57/0.0017 1.48/0.0078 0.18/0.0037 Transverse IP (um) 69.97/0.15 15.0/0.089 9.9/0.059 15.4/0.125 5.6/0.086 x/y/IP 0.118/0.083 0.013/0.083 0.0055/0.062 0.008/0.054 0.006/0.054 RF Phase (degree) 153.0 128 126.9 165.3 136.2 VRF (GV) 6.87 2.1 0.41 0.14 0.05 f RF (MHz) (harmonic) 650 650 (217800) Nature z (mm) 2.14 2.72 3.37 3.97 3.83 Total z (mm) 2.65 2.9 4.0 HOM power/cavity (kw) 3.6 (5cell) 0.41(2cell) 0.36(2cell) 1.99(2cell) 0.12(2cell) Energy spread (%) 0.13 0.098 0.065 0.037 Energy acceptance (%) 1.5 Energy acceptance by RF (%) 6 1.1 0.68 n 0.23 0.26 0.15 0.12 0.22 Life time due to beamstrahlung_cal (minute) 47 52 F (hour glass) 0.96 0.98 0.99 Lmax/IP (1034cm-2s-1) 2.04 2.0 5.15 11.9

Main sources of beam dilution and beam halo generation in CEPC Beam-gas scattering  transverse distribution Beam-gas bremsstrahlung  longitudinal distribution Intrabeam scattering  transverse distribution + longitudinal distribution Table1. CEPC Higgs parameters Energy E0 (GeV) 120 Circumference (km) 100 Nature energy spread 0 9.810-4 Energy acceptance 0.021 Average x/y (m) 70/70 Horizontal emittance (nm) 1.31 Vertical emittance (pm) 4 Transverse damping time (ms) 48 Longitudinal damping time (ms) 24

Cross section of beam-gas scattering The differential cross-section of the electron scattering with an gas atom is where Z is the atomic number, re is the classical electron radius,  is the relativistic Lorentz factor and min is determined by the uncertainty principle as Total cross-section: Assuming , make an integration over one direction, one gets the differential cross-section for the other direction Probability density

Distribution calculation Assuming the CO gas is dominate for beam-gas scattering in CEPC, Z=501/2 and n=2. (Q—Residual gas density , nthe number of atoms in each gas molecule, Pthe pressure of the gas) Collision probability during one damping time The distribution is decided only by two parameters! —Scattering frequency —Minimum scattering angle normalized by angular beam size

CEPC beam distribution due to beam-gas scattering Average beta function was used. Here and hereafter, the effect of local low beta insertion (FFS) was not included. Coordinates were normalized by RMS beam size under zero current. Horizontal emittance growth: 7E-6 Vertical emittance growth: 0.14%

Cross section and tail distribution due to beam-gas bremsstrahlung The differential cross-section of beam-gas bremsstrahlung is where  is the energy loss due to bremsstrahlung. (max is equal to the ring energy acceptance, min is a assumed value.) Probability density Energy distribution:

Energy distribution due to beam-gas bremsstrahlung Almost no longitudinal emittance growth due to beam-gas bremsstrahlung.

IBS cross section for longitudinal direction differential cross section of Coulomb scattering in the center-of-mass system (Small angle scattering) The angular change of the momentum gives a momentum component perpendicular to the horizontal axis Where is the c.m. velocity of the electrons in units of c ( ) and is the momenta exchange from horizontal direction to the perpendicular directions in the center-of-mass frame.  probability is same for transfers occurring in the vertical and longitudinal directions. Total events of momenta exchange from horizontal direction to longitudinal direction per second: Probability density function:

Energy distribution due to IBS For CEPC, IBS has no contribution to longitudinal distribution. Longitudinal distribution is dominated by beam-gas bremsstrahlung effect.

vertical distribution due to IBS Vertical emittance growth: 102% !

Comparison with beam-gas scattering effect IBS Beam-gas scattering For Higgs, vertical distribution is dominated by IBS.