KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association Institut für Technische Thermodynamik www.kit.edu.

Slides:



Advertisements
Similar presentations
TWO STEP EQUATIONS 1. SOLVE FOR X 2. DO THE ADDITION STEP FIRST
Advertisements

You have been given a mission and a code. Use the code to complete the mission and you will save the world from obliteration…
Nuclear Reactors, BAU, 1st Semester, (Saed Dababneh). 1 Multi-group Model Wide neutron spectrum. One-group, two-group? Should be generalized.
Agenda Semiconductor materials and their properties PN-junction diodes
Chemical Equilibrium Chapter 15 AP CHEMISTRY
THE FINITE ELEMENT METHOD
SPECIAL PURPOSE ELEMENTS
By D. Fisher Geometric Transformations. Reflection, Rotation, or Translation 1.
Spectral Analysis of Function Composition and Its Implications for Sampling in Direct Volume Visualization Steven Bergner GrUVi-Lab/SFU Torsten Möller.
MIT 2.71/2.710 Optics 10/25/04 wk8-a-1 The spatial frequency domain.
2 pt 3 pt 4 pt 5pt 1 pt 2 pt 3 pt 4 pt 5 pt 1 pt 2pt 3 pt 4pt 5 pt 1pt 2pt 3 pt 4 pt 5 pt 1 pt 2 pt 3 pt 4pt 5 pt 1pt Two-step linear equations Variables.
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
Title Subtitle.
DIVIDING INTEGERS 1. IF THE SIGNS ARE THE SAME THE ANSWER IS POSITIVE 2. IF THE SIGNS ARE DIFFERENT THE ANSWER IS NEGATIVE.
Addition Facts
Year 6 mental test 5 second questions
Data Visualization Lecture 4 Two Dimensional Scalar Visualization
SI23 Introduction to Computer Graphics
7.1 si31_2001 SI31 Advanced Computer Graphics AGR Lecture 7 Polygon Shading Techniques.
SI31 Advanced Computer Graphics AGR
1 PV Generation in the Boundary Layer Robert Plant 18th February 2003 (With thanks to S. Belcher)
ZMQS ZMQS
Colman C.C. Wong & Chun-Ho Liu
Announcements Homework 6 is due on Thursday (Oct 18)
ABC Technology Project
CHAPTER 6 Introduction to Graphing and Statistics Slide 2Copyright 2012, 2008, 2004, 2000 Pearson Education, Inc. 6.1Tables and Pictographs 6.2Bar Graphs.
4.6 Perform Operations with Complex Numbers
1 Application of for Predicting Indoor Airflow and Thermal Comfort.
1 Analysis of Random Mobility Models with PDE's Michele Garetto Emilio Leonardi Politecnico di Torino Italy MobiHoc Firenze.
F. Bozza M.C. Cameretti A. Senatore R. Tuccillo Dipartimento di Ingegneria Meccanica per l’Energetica (D.I.M.E.) Università di Napoli “Federico II” Naples,
Squares and Square Root WALK. Solve each problem REVIEW:
Chemical Systems and Equilibrium
Universität Kaiserslautern Institut für Technologie und Arbeit / Institute of Technology and Work 1 Q16) Willingness to participate in a follow-up case.
Understanding Generalist Practice, 5e, Kirst-Ashman/Hull
Chapter 5 Test Review Sections 5-1 through 5-4.
GG Consulting, LLC I-SUITE. Source: TEA SHARS Frequently asked questions 2.
Addition 1’s to 20.
25 seconds left…...
LES of Vertical Turbulent Wall Fires
1 Modal methods for 3D heterogeneous neutronics core calculations using the mixed dual solver MINOS. Application to complex geometries and parallel processing.
Week 1.
We will resume in: 25 Minutes.
Eric Prebys, FNAL.  We have focused largely on a kinematics based approach to beam dynamics.  Most people find it more intuitive, at least when first.
©Brooks/Cole, 2001 Chapter 12 Derived Types-- Enumerated, Structure and Union.
PSSA Preparation.
Lecture 20: Laminar Non-premixed Flames – Introduction, Non-reacting Jets, Simplified Description of Laminar Non- premixed Flames Yi versus f Experimental.
Maria Ugryumova Direct Solution Techniques in Spectral Methods CASA Seminar, 13 December 2007.
Overview of ERL R&D Towards Coherent X-ray Source, March 6, 2012 CLASSE Cornell University CHESS & ERL 1 Cornell Laboratory for Accelerator-based ScienceS.
State Variables.
Flamelet-based combustion model for compressible flows
Dimension Reduction by pre-image curve method Laniu S. B. Pope Feb. 24 th, 2005.
2003 International Congress of Refrigeration, Washington, D.C., August 17-22, 2003 CFD Modeling of Heat and Moisture Transfer on a 2-D Model of a Beef.
Parallel Computation of the 2D Laminar Axisymmetric Coflow Nonpremixed Flames Qingan Andy Zhang PhD Candidate Department of Mechanical and Industrial Engineering.
LES Combustion Modeling for Diesel Engine Simulations Bing Hu Professor Christopher J. Rutland Sponsors: DOE, Caterpillar.
Ghent University - UGent Department of Flow, Heat and Combustion Mechanics Simulations of hydrogen auto-ignition Ivana Stanković.
Dimension Reduction of Combustion Chemistry Zhuyin (Laniu) Ren S. B. Pope Mar. 29 th, 2005.
Dimension Reduction of Combustion Chemistry using Pre-Image Curves Zhuyin (laniu) Ren October 18 th, 2004.
Lecture Objectives: -Define turbulence –Solve turbulent flow example –Define average and instantaneous velocities -Define Reynolds Averaged Navier Stokes.
BsysE595 Lecture Basic modeling approaches for engineering systems – Summary and Review Shulin Chen January 10, 2013.
Mathematical Equations of CFD
TURBULENT PREMIXED FLAMES AT HIGH KARLOVITZ NUMBERS UNDER OXY-FUEL CONDITIONS Yang Chen 1, K.H. Luo 1,2 1 Center for Combustion Energy, Tsinghua University,
Development of Combined Dual- Pump Vibrational and Pure- Rotational Coherent anti-Stokes Raman Scattering Technique Aman Satija and Robert P. Lucht.
Heat release modeling FPVA-based model V. Terrapon and H. Pitsch 1 Stanford PSAAP Center - Working draft.
1 LES of Turbulent Flows: Lecture 7 (ME EN ) Prof. Rob Stoll Department of Mechanical Engineering University of Utah Spring 2011.
University of Wisconsin -- Engine Research Center slide 1 Flamelet Modeling for the Diffusion Combustion in OpenFOAM ME 769 Final Project Presentation.
Ignition by hot jets Dr.-Ing. Detlev Markus. Ignition by hot turbulent jet Investigation of ignition process by hot jets (PTB, Braunschweig, Germany)
University of Wisconsin -- Engine Research Center slide 1 Counter-flow diffusion flame ME Project Chi-wei Tsang Longxiang Liu Krishna P.
Objective Introduce Reynolds Navier Stokes Equations (RANS)
Chamber Dynamic Response Modeling
Presentation transcript:

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association Institut für Technische Thermodynamik Coping with complexity: Model Reduction for the Simulation of Turbulent Reacting flows V. Bykov, U. Maas (Karlsruhe Institute of Technology) V. Goldshtein (Ben Gurion University)

Institut für Technische Thermodynamik 2 Overview Introduction Manifold-Based Concepts for Model Reduction Dimension reduction for reaction/diffusion systems ImplementationConclusions

Institut für Technische Thermodynamik 3 equation for the scalar field filtered or averaged Problems: extremely high dimension of the system! non-linear chemical source terms strong coupling of chemistry with molecular transport stiffness of the governing equation system On which level of accuracy does this equation system have to be solved? Reduce the dimension of the governing equation system! Note: Chemistry has to be analyzed in the context of a reacting flow! convectionchemistrytransport Conservation Equations

Institut für Technische Thermodynamik 4 describe temporal evolution of the species concentrations in chemical reactions needed for modeling reacting flows species conservation equations averaged species conservation equations FDF/PDF-transport equation source terms are functions of the thermokinetic state concept of elementary reactions Chemical Source Terms

Institut für Technische Thermodynamik 5 Points of View detailed chemistry equation for the scalar field comprises n s + 2 equations Warnatz, Maas, Dibble: Combustion 2001 detailed and accurate, but enormous computational effort enormous amount of unimportant information infinitely fast chemistry equation for the scalar field reduces to an equation system for h, p, c i all species concentrations and the temperature are known as funcions of these variables

Institut für Technische Thermodynamik 6 Stiff chemical kinetics as well as molecular transport processes cause the existence of attractors in composition space ILDMs of higher hydrocarbons (Maas & Pope 1992, Blasenbrey & Maas 2000) Correlation analysis of DNS-Data (Maas & Thevenin 1998) Observation:

Institut für Technische Thermodynamik 7 Decomposition of Motions Decomposition into very slow, intermediate and fast subspaces convectionchemistrytransport diffusion-convection equation for quasi conserved variables evolution along the LDM ILDM-equations

Institut für Technische Thermodynamik 8 Low-Dimensional Manifold Concepts QSSA (Bodenstein 1913) Set right hand side for qss species to zero ILDM (Maas & Pope 1992) Use eigenspace decomposition of Jacobian GQL (Bykov et al. 2007) Use eigenspace decomposition of global quasilinearization matrix system equationmanifold equation

Institut für Technische Thermodynamik 9 the system is transformed into fast/slow subsystems fast subsystem: slow subsystem: Projection of the state space of the CO-H 2 -O 2 system Reduction - decomposition of motions

Institut für Technische Thermodynamik 10 red mesh: ILDM, green mesh: manifold, symbols: reference points blue curve: detailed system solution, cyan curve: fast subsystem solution magenta curves: detailed stationary system solution of flat flames Bykov, Goldshtein, Maas 2007 GQL application

Institut für Technische Thermodynamik 11 Red curve: detailed solution green mesh: 2D GQL manifold red cubes: reference set, Spheres: reduced solution GQL for an Ignition Problem Temperature dependence of the ignition delay time Circles: reduced model (m s = 14) red dashed curve: detailed model (m d =31)

Institut für Technische Thermodynamik 12 REDIMs for Le = 1 and equal diffusivities Bykov and Maas 1997 Stationary solution gives the invariant manifold, is an estimate for grad Stationary solution gives the invariant manifold, is an estimate for grad KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) Evolution of a manifold according to reaction and diffusion Reaction-Diffusion-Manifolds (REDIM) (Bykov & Maas 2007)

Institut für Technische Thermodynamik 13 Principle of the Evolution equation mixing lineequilibrium curve

Institut für Technische Thermodynamik 14 Principle of the Evolution equation mixing line equilibrium curve

Institut für Technische Thermodynamik 15 KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) Evolution equation for the manifold Basic Procedure: formulate initial guess specify boundary conditions estimate the gradient solve the evolution equation (PDE) Extension to detailed transport

Institut für Technische Thermodynamik 16 Comparison ILDM-REDIM Premixed syngas/air system Left: red mesh: ILDM, green mesh: REDIM Right: reaction rate of CO2, mesh: domain of existence of the 2D ILDM

Institut für Technische Thermodynamik 17 It has been shown (Bykov & Maas 2007) that a good estimate gets more and more unimportant for increasing dimension In this work: use gradients from typical flamelets KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) Estimation of the gradient

Institut für Technische Thermodynamik 18 KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) Results: Non-Premixed Syngas Flame symbols: reduced solution; curves: detailed solution green:Le=1, equal diffusivities blue:detailed transport, no thermal diffusion red:detailed transport very good gradient estimates used from flamelets (cf. Bykov & Maas 2008)

Institut für Technische Thermodynamik 19 KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) symbols: reduced solution; curves: detailed solution green:Le=1, equal diffusivities blue:detailed transport, no thermal diffusion red:detailed transport very good gradient estimates used from flamelets (cf. Bykov & Maas 2008) Results: Stoichiometric Premixed Syngas Flame

Institut für Technische Thermodynamik 20 KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) Results: Stoichiometric Premixed Syngas Flame symbols: reduced solution; curves: detailed solution green:Le=1, equal diffusivities blue:detailed transport, no thermal diffusion red:detailed transport very good gradient estimates used from flamelets (cf. Bykov & Maas 2008)

Institut für Technische Thermodynamik 21 KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) 2-D Manifold for a Non-Premixed Syngas Flame stoichiometric syngas-air flat flame, detailed transport curves: detailed solution, mesh: REDIM Left: starting guess (linear interpolation between flamelets) Right: REDIM

Institut für Technische Thermodynamik 22 Attracting Properties of the REDIM 2D REDIM (mesh) and convergence of an unsteady flame (cyan lines) towards the REDIM For simpolicity: use visualization to monitor the movement towards the manifold.

Institut für Technische Thermodynamik 23 Implementation ILDM GQL REDIM interpolation mass momentum energy reduced variables reactiontransport CFD-code reduced states

Institut für Technische Thermodynamik 24 Example: LES of a premixed flame Large eddy simulation and experimental studies of turbulent premixed combustion near extinction P. Wang, F. Zieker, R. Schießl, N. Platova, J. Fröhlich, U. Maas European Combustion Meeting 2011 Scatter plot of temperature vs. hydrogen mass fraction. = 0.71 at one time step, calculated from LES resolved values. Instantaneous contours of temperature, red line: Z H =0.7. An event of local extinction is seen around x/R=8, r/R=1.

Institut für Technische Thermodynamik 25 Conclusions Efficient methods for kinetic model reduction and its subsequent implementation in reacting flow calculations have been presented. GQL and ILDM allow an efficient decoupling of fast chemical processes The slow chemistry domain can be treated efficiently by the REDIM (REaction-DIffusion-Manifold, REduction of the DIMension)- method. Financial support by the Deutsche Forschungsgemeinschaft is gratefully acknowledged.