INDRA: Identification de Noyaux et Détection avec Résolutions Accrues

Slides:



Advertisements
Similar presentations
Ion Beam Analysis techniques:
Advertisements

Γ spectroscopy of neutron-rich 95,96 Rb nuclei by the incomplete fusion reaction of 94 Kr on 7 Li Simone Bottoni University of Milan Mini Workshop 1°-
Study of nuclear equations of state: the ASY-EOS experiment at GSI Simone Santoro 1,2 for ASY-EOS Collaboration 1 University of Messina 2 INFN - Catania.
Systematics of Temperature Measurements with ALADIN ALADIN S114 Spring 1993.
Phase transitions in nuclei: from fission to multifragmentation and back F.Gulminelli – LPC Caen First multifragmentation models: ~1980 (L.Moretto, J.Randrup,
WCI 2004: 3- SORTING Catania January 2004 WCI 2004 session 3: DATA SORTING Can we extract mechanism? Can we extract sources in space-time? What are the.
Introduction to Hadronic Final State Reconstruction in Collider Experiments Introduction to Hadronic Final State Reconstruction in Collider Experiments.
For more information about the facility visit: For more information about our group visit:
Using GEMINI to study multiplicity distributions of Light Particles Adil Bahalim Davidson College Summer REU 2005 – TAMU Cyclotron Institute.
Michela D'AgostinoBologna UniversityINFN-Bologna (Italy) Eurisol and the nuclear EOS: experimental challenges Keyword from the 2003 Eurisol report: Isospin.
E432a: Decay of Highly Excited Projectile-like Fragments Formed in dissipative peripheral collisions at intermediate energies 1.Understanding thermodynamic.
First simulations of FAZIA Napoli 3-5 September 2007.
- Mid-rapidity emission in heavy ion collisions at intermediate energies - Source reconstruction - Free nucleon multiplicities - Neutron/proton ratio of.
Mauro BrunoBologna UniversityINFN-Bologna (Italy) H.Jaqaman et al. PRC27(1983)2782 Thermodynamical aspects in heavy ion reactions.
Isotopically resolved residues produced in the fragmentation of 136 Xe and 124 Xe projectiles Daniela Henzlova GSI-Darmstadt, Germany on leave from NPI.
Laura Francalanza Collaborazione EXOCHIM INFN Sezione di Catania - LNS.
The FARCOS project Collaboration: INFN (CT, LNS, MI, NA; Italy), GANIL (France), Un. Huelva (Spain) Synergies: Fazia, Neutron detectors, Spectrometers,
Peripheral collisions as a means of attaining high excitation –Velocity dissipation is key quantity R. Yanez et al, PRC (in press) Proximity emission as.
2007’ One classical method - Multiplicity in N-N collisions at SPS/CERN J.T.RheeKonkuk-University.
Semiempirical MonteCarlo for FAZIA Napoli, 3-5 October, 2007 Giovanni Casini INFN Florence Silvia Piantelli and Giovanni Casini.
Recent results on the symmetry energy from GANIL A.Chbihi GANIL Why studying E sym in Fission Extracting E sym from isotopic distribution of FF Influence.
B-1 Fragmentation – 0 Introduction Generalities Isotopic distributions Neck emission Participant-spectator model Fragment separators LISE of GANIL FRS.
Neutron enrichment of the neck-originated intermediate mass fragments in predictions of the QMD model I. Skwira-Chalot, T. Cap, K. Siwek-Wilczyńska, J.
Charge Equilibration Dynamics: The Dynamical Dipole Competition of Dissipative Reaction Mechanisms Neck Fragmentation M.Di Toro, PI32 Collab.Meeting, Pisa.
RNB Cortina d’Ampezzo, July 3th – 7th 2006 Elisa Rapisarda Università degli studi di Catania E.Rapisarda for the Diproton collaboration 18 *
N/Z Dependence of Isotopic Yield Ratios as a Function of Fragment Kinetic Energy Carl Schreck Mentor: Sherry Yennello 8/5/2005 J. P. Bondorf et al. Nucl.
High-resolution experiments on nuclear fragmentation at the FRS at GSI M. Valentina Ricciardi GSI Darmstadt, Germany.
Mid-peripheral collisions : PLF* decay Statistical behavior  isotropy  v H > v L  v L > v H P T TLF * PLF * 1 fragment v L > v H forward v H > v L backward.
Signals of bimodality in fragmentation induced by 3.65 A GeV 12C B.Grabez Institute of Physics Zemun.
Momentum distributions of projectile residues: a new tool to investigate fundamental properties of nuclear matter M.V. Ricciardi, L. Audouin, J. Benlliure,
Observation of new neutron-deficient multinucleon transfer reactions
The experimental evidence of t+t configuration for 6 He School of Physics, Peking University G.L.Zhang Y.L.Ye.
Introduction to Hadronic Final State Reconstruction in Collider Experiments Introduction to Hadronic Final State Reconstruction in Collider Experiments.
Michael Bendel intrinsic phoswich conzept – CALOR 2014 – Gießen 1 Michael Bendel Physik-Department E12 Technische Universität München a new technique for.
Lecture 4 1.The role of orientation angles of the colliding nuclei relative to the beam energy in fusion-fission and quasifission reactions. 2.The effect.
Focal plane detector discussion Kwangbok Lee Low Energy Nuclear Science team Rare Isotope Science Project Institute for Basic Science July 11,
Signals for dynamical process from IMF-IMF correlation function
Multi-Strange Hyperons Triggering at SIS 100
Entry distributions for fragments produced in deep-inelastic collisions with stable and radioactive beams For the PARIS collaboration W. Królas, M. Kmiecik,
“CALORIMETRY” Distraction Deleted Message:
FAST IN-MEDIUM FRAGMENTATION OF PROJECTILE NUCLEI
Efficient transfer reaction method with RI BEams
Transverse and elliptic flows and stopping
Is the caloric curve a robust signal of the phase transition
POLITA T. Cap, J. Wilczyński, K. Siwek-Wilczyńska,
Exclusive w/h production in pp collisions at Ekin=3.5 GeV with HADES
Reaction dynamics – Intermediate energies
Ternary Fission and Neck Fragmentation
Hans-Jürgen Wollersheim
The FAZIA modules: recent results and possible couplings with gas detectors S. Barlini for the FAZIA collaboration GDS Workshop, January 2017.
Content Heavy ion reactions started fragmenting nuclei in the 1980’s. Its study taught us that nuclear matter has liquid and gaseous phases, phase.
World Consensus Initiative 2005
DSSSD for b decay investigations of heavy neutron-rich isotopes
“CALORIMETRY” Distraction Deleted Message:
Isospin observables Observables
Peripheral collisions Hans-Jürgen Wollersheim
Cyclotron Institute, Texas A&M University
GSI-Darmstadt, Germany
Searching for states analogous to the 12C Hoyle state in heavier nuclei using the thick target inverse kinematics technique. Marina Barbui 5/17/2018, Galveston,
Letter of Intent submitted to the SPES scientific committee T. Marchi
Reaction Dynamics in Near-Fermi-Energy Heavy Ion Collisions
Intermediate-mass-fragment Production in Spallation Reactions
Daniela Henzlova for CHARMS collaboration GSI-Darmstadt, Germany
1. Introduction Secondary Heavy charged particle (fragment) production
Variable Mode High Acceptance Spectrometer
Mid-peripheral collisions : PLF* decay
Recent Highlights and Future Plans at VAMOS
Production Cross-Sections of Radionuclides in Proton- and Heavy Ion-Induced Reactions Strahinja Lukić.
Daniela Henzlova GSI-Darmstadt, Germany
in 124Sn,107Sn + 120Sn collisions at 600 MeV/nucleon
Presentation transcript:

INDRA: Identification de Noyaux et Détection avec Résolutions Accrues 17 rings 2o-176o 336 telescopes 90% of 4π Z=1-90 A for H, He, Li, Be low detection thresholds: 0.8 A.MeV for Z≤12 and ~1.3 A.MeV above Phoswich for 2o≤θ≤ 3o and now Si-CsI Ion. Chamb.-Si-CsI(Tl) for 3o≤θ≤45o Ion. Chamb.-CsI for 45o<θ≤176o

The INDRA data base on multifragmentation 1ère campagne 2ème campagne 3ème campagne 4ème campagne 5ème campagne 36Ar+58Ni 32, 40, 52, 63, 74, 84, 95 A.MeV 58Ni+58Ni 32,40, 52, 63, 74, 82, 90 A.MeV 12C+24Mg 53.2, 95 A.MeV 12C+112Sn 300, 600, 1000 A.MeV 12C+124Sn 300, 600 A.MeV 129Xe+27Al 18 A.MeV 36Ar+KCl 32, 40, 52, 74 A.MeV 58Ni+197Au 32, 52, 63, 74, 82, 90 A.MeV 12C+124Sn 95 A.MeV 12C+112Sn 95 A.MeV 12C+197Au 95, 300, 600, 1000, 1800 A.MeV 129Xe+58Ni 8 A.MeV 129Xe+ natSn 25, 32, 39, 45, 50 A.MeV 181Ta+197Au 32.8, 39.6 A.MeV 107Ag+58Ni 52 A.MeV 129Xe+natSn 50 A.MeV 129Xe+124Sn 80, 100, 150, 250 A.MeV 129Xe+112Sn 100 A.MeV 124Xe+112Sn 32, 45 A.MeV 124Xe+124Sn 32 A.MeV 129Xe+natSn 8, 12, 15, 18, 20, 25, 27, 29, 35 A.MeV 136Xe+112Sn 32, 45 A.MeV 136Xe+124Sn 32, 45 A.MeV 155Gd+238U 36 A.MeV 181Ta+238U(12C) 32.8, 39.6 A.MeV 58Ni+natAg 52 A.MeV 197Au+ 197Au 40, 60, 80, 100, 150 A.MeV 136Xe+197Au 32 A.MeV 129Xe+197Au 15, 18, 27, 35 A.MeV 238U+238U 24 A.MeV 93Nb+27Al 30 A.MeV 197Au+58Ni 100 A.MeV 208Pb+58Ni 28.8 A.MeV 93Nb+24Mg 30 A.MeV 12C+238U 1000 A.MeV 208Pb+124Sn 28.8 A.MeV 93Nb+116Sn 30 A.MeV 208Pb+197Au 28.8 A.MeV 116Sn+93Nb 25, 30 A.MeV

INDRA: Identification de Noyaux et Détection avec Résolutions Accrues Experimental case: 5 campaigns of measurements (4 in Ganil-France + 1 at GSI-Germany) versatile detector: coupling with first Chimera ring, with other telescopes for time of flight measurements, position sensitive detectors for crystal blocking experiments (fission of SHE), spectrometer (Vamos) Symmetric-asymmetric systems, reverse & direct kinematic, Ebeam~5A.MeV to 1A.GeV Well suited for central collisions of symmetric systems but some drawbacks for asymmetric one when C.M. velocity is small (especially at backward angles) Physical results: physical analysis on: vaporization of QP, fission, central collisions of fusion-like sources, deexcitation studies for a large range of hot nuclei, mid rapidity emission, neck formation… intra-event correlations: b estimation, reaction plane determination, calorimetry, reconstruction of hot primary fragments… Phase transition: temperature, heat capacity, Δscaling, scaling laws, bimodality, spinodal decomposition… Reaction mechanism: mid-rapidity, neck, fusion like event, fission, momentum transfer, fragment formation, isospin equilibration, chronometer of the process… Deexcitation of hot nuclei: from evaporation to vaporization, fission and multifragmentation of any kind Comparison with model: statistical as well as dynamical

GARFIELD: General ARray for Fragment Identification and for Emitted Light particles in Dissipative collisions General characteristics High granularity (400 ΔE-E telescopes  4o-150o ) Low energy thresholds (ionization chambers as ΔE) A and Z identification (1≤Z≤8) up to  90o Digital electronics for pulse-shape discrimination Ion. Chamb. Si CsI The Garfield drift chamber 180 Double Stage E (CsI(Tl)) - DE (MSGC) telescopes Angular coverage: (30o – 85o ; 95o – 150o) Charge resolution from p to heavy-ions, with DZ/Z=1/28 Angular resolution (Δθ=1° Δφ= 7.5 °) Side detectors from Multics

32S + 58Ni at 11 AMeV Multi fragment production α-α GARFIELD: General ARray for Fragment Identification and for Emitted Light particles in Dissipative collisions 32S + 58Ni at 11 AMeV Multi fragment production Fizika B12 (2003) 39 32S + 58,64Ni at 14.5 AMeV α-α Evaporation residue Mass identification Correlation functions Phase transition in strongly interacting matter, Prague 2004 – Nucl. Phys. (to be published) 5th Italy-Japan Symposium – Naples 2004 – (to be published)

Multics + Miniball 87% of 4π Multics telescopes Beam hole Multics 3 layers telescopes: Si-500 μm position sensitive CsI(Tl) + photodiode 3o≤θlab≤25o Energy threshold ~1.5 A.MeV Z identification up to the beam charge Miniball 171 phoswich detectors 25o≤θlab≤160o Energy threshold ~2-3-4 A.MeV for Z=3-10-18 ~Z=20 identification isotopic identification for Z=1-2

Critical behavior inside the coexistence region Results of the Multics+Miniball experiment Nucl. Phys. A 724 (2003) 455 Nucl. Phys. A 650 (1999) 329 Phys. Lett. B 473 (2000) 219 Nucl. Phys. A 699 (2002) 795) Nucl. Phys. A 734 (2004) 512 Au Liquid-Gas     εc eV E*/A (A.MeV) Liquid-drop Critical behavior inside the coexistence region Z B I G Asym 12 Phase transition in strongly interacting matter, Prague 2004 – Nucl. Phys. (to be published) 5th Italy-Japan Symposium – Naples 2004 – (to be published)

FAZIA: Four π A-Z Indentification Array half forward part ~6000 telescopes: Si-ntd/Si-ntd/CsI possibility of coupling with other detectors like spectrometer, gas chamber, neutron detectors ~1000 hits/s maximum multiplicity ~150/event complete Z identification and A up to ~30 digital electronics for pulse-shape discrimination