On a possibility of baryonic exotica

Slides:



Advertisements
Similar presentations
Quark structure of the Pentaquark(?) Jo Dudek, Jefferson Lab.
Advertisements

Soliton spectroscopy, baryonic antidecuplet
Parity violating asymmetries: Milos (Greece) May 2006 Solitonic approach to strange Form Factors Klaus Goeke Bochum University Transregio/SFB Bonn, Bochum,
Lattice study for penta-quark states
HL-2 April 2004Kernfysica: quarks, nucleonen en kernen1 Outline lecture (HL-2) Quarkonium Charmonium spectrum quark-antiquark potential chromomagnetic.
August 2005Michal Praszalowicz, Krakow1 quarks Michal Praszalowicz Jagellonian University Krakow, Poland at ISMD
Heavy quark spectroscopy and accurate prediction of b-baryon masses in collaboration with Marek Karliner, B. Keren-Zur and J. Rosner H.J. Lipkin.
Ghil-Seok Yang, Yongseok Oh, Hyun-Chul Kim NTG (Nuclear Theory Group), (Nuclear Theory Group), Inha University Inha University HEP (Center for High Energy.
Successes and problems of chiral soliton approach to exotic baryons
Istanbul06 S.H.Lee 1 1.Introduction 2.Theory survey 3.Charmed Pentaquark 4.Charmed Pentaquark from B decays Hadron spectroscopy, Heavy pentaquark, and.
NSTAR 2007Roelof Bijker, ICN-UNAM1 Flavor Asymmetry of the Nucleon Sea in an Unquenched Quark Model Introduction Degrees of freedom Unquenched quark model.
Rencontres de Moriond 2005 Chiral soliton model predictions for pentaquarks Rencontres de Moriond 2005 Michał Praszałowicz - Jagellonian University Kraków,
Strange Pentaquarks Michał Praszałowicz
Mass modification of heavy-light mesons in spin-isospin correlated matter Masayasu Harada (Nagoya Univ.) at Mini workshop on “Structure and production.
1 The theoretical understanding of Y(4260) CONG-FENG QIAO Graduate School, Chinese Academy of Sciences SEPT 2006, DESY.
PATTERNS IN THE NONSTRANGE BARYON SPECTRUM P. González, J. Vijande, A. Valcarce, H. Garcilazo.
Light mesons and structure of QCD vacuum
Ordinary and exotic baryons, strange and charmed, in the relativistic mean field approach Dmitri Diakonov Petersburg Nuclear Physics Institute Kolomna,
HIM SHLee 1 1.Introduction for Exotics 2.Hadron production in HIC 3.Exotics from RHIC Hadron Physics at RHIC Su Houng Lee Yonsei Univ., Korea Thanks.
Quark Nuclear Physics and Exotic Pentaquark as a Gamov-Teller Resonance Dmitri Diakonov Petersburg Nuclear Physics Institute QNP-09, Beijing Sep 24, 2009.
Ordinary and exotic baryons, strange and charmed, in the relativistic mean field approach Dmitri Diakonov Petersburg Nuclear Physics Institute Kyoto, Feb.
S-Y-05 S.H.Lee 1 1.Introduction 2.Theory survey 3.Charmed Pentaquark 4.Charmed Pentaquark from B decays Physics of Pentaquarks Su Houng Lee Yonsei Univ.,
Hadron Spectroscopy with high momentum beam line at J-PARC K. Ozawa (KEK) Contents Charmed baryon spectroscopy New experiment at J-PARC.
Nov. 12, HAPHY. A QCD sum rule analysis of the PLB 594 (2004) 87, PLB 610 (2005) 50, and hep-ph/ Hee-Jung Lee Vicente Vento (APCTP & U. Valencia)
R L Jaffe DIS05 Madison Life and Death among the Hadrons R. L. Jaffe DIS05 Madison April 2005 R. L. Jaffe DIS05 Madison April 2005 Update on the Theta.
Quark Nuclear Physics or A theory of baryon resonances at large N c Dmitri Diakonov, Victor Petrov and Alexey Vladimirov Petersburg Nuclear Physics Institute,
Exotic baryon resonances in the chiral dynamics Tetsuo Hyodo a a RCNP, Osaka b ECT* c IFIC, Valencia d Barcelona Univ. 2003, December 9th A.Hosaka a, D.
Pentaquark decay width in QCD sum rules F.S. Navarra, M. Nielsen and R.R da Silva University of São Paulo, USP Brazil (  decay width) hep-ph/ (
Exotic baryons: predictions, postdictions and implications Hanoi, August 8 Maxim V. Polyakov Petersburg NPI & Liege University Outline: - predictions.
DPyC 2007Roelof Bijker, ICN-UNAM1 An Unquenched Quark Model of Baryons Introduction Degrees of freedom Unquenched quark model Closure limit; Spin of the.
The study of pentaquark states in the unitary chiral approach
Hadron spectroscopy Pentaquarks and baryon resonances
Baryon Isospin Mass Splittings
P. Gubler, T.T. Takahashi and M. Oka, Phys. Rev. D 94, (2016).
Search for exotic baryon resonances in pp collisions at the CERN SPS
A novel probe of Chiral restoration in nuclear medium
mesons as probes to explore the chiral symmetry in nuclear matter
Extending the Linear Sigma Model to Nf = 3
Observation of the DsJ(2463)Dspo & Confirmation of the DsJ(2317)Dspo
Hadron-structure studies at a neutrino factory
Heavy quark spectroscopy and accurate prediction of b-baryon masses
Heavy quark spectroscopy and prediction of bottom baryon masses
Scalar and Axial-Vector Mesons in a Three-Flavour Sigma Model
Quantum Numbers of Charmed Baryons
Nucleon Resonances from Lattice QCD
Scalar Meson σ(600) in the QCD Sum Rule
Experimental Status of Pentaquark States
Possible Interpretations of DsJ(2632)
Color Superconductivity in dense quark matter
Section IX - Quark Model of Hadrons
Charm2010 4TH International Workshop on Charm Physics
Polarized Structure Function of Nucleon and Orbital Angular Momentum
charm baryon spectroscopy and decays at Belle
d*, a quark model perspective
Dmitri Diakonov Petersburg Nuclear Physics Institute
有限密度・ 温度におけるハドロンの性質の変化
Charmonium spectroscopy above thresholds
s, pentaquarks or excited heavy baryons, or both?
Chiral Structure of Hadronic Currents
Towards Understanding the In-medium φ Meson with Finite Momentum
Spectra and decays of hybrid charmonia
QCD和則とMEMを用いた有限密度中のvector mesonの研究の現状と最近の発展
Interpretation of the observed hybrid candidates by the QGC Model
From J/ψ to LHCb Pentaquark ……and beyond
Understanding DsJ*(2317) and DsJ(2460)
Heavy quark exotica and heavy quark symmetry
c c c c c c c c c c a Charmed baryon spectroscopy at Belle
5-quark states in a chiral potential Atsushi Hosaka (RCNP)
Edward Shuryak Stony Brook
Remarks on mass difference between the charged and neutral K*(892)
Presentation transcript:

On a possibility of baryonic exotica Michał Praszałowicz in collaboration with M.V. Polyakov (Bochum) H.-C. Kim (Incheon)

2003 LEPS Collaboration

July 2003

exotic quantum numbers very small width: a few MeV July 2003 exotic quantum numbers small mass: 1.5 GeV very small width: a few MeV

Michal Praszalowicz, Krakow Quark Model (uudds): 4 x 350 + 500 ~ 1900 MeV  ~ 400 - 1000 MeV pentaquark: strangeness +1 + (2s) - (s) = 150 MeV spin 1/2 parity   13.3.2007 Michal Praszalowicz, Krakow

Michal Praszalowicz, Krakow Chiral Soliton Models Biedenharn, Dothan (1984): 10-8 ~ 600 MeV Skyrme model MP (1987): M= 1535 MeV Skyrme model in model independent approach, second order Diakonov, Petrov, Polyakov (1997): QM - model independent approach, 1/Nc corrections  M= 1530 MeV small width < 15 MeV ! In Chiral Soliton Models quark-antiquark pairs are added as chiral excitations of low mass (pion is massless!) rather than as two constituent (i.e. heavy) quarks. Michal Praszalowicz, Krakow

Michal Praszalowicz, Krakow Soliton Quark Model (uudds): 4 x 350 + 500 ~ 1900 MeV 1500 MeV  ~ 400 MeV a few MeV pentaquark: strangeness +1 + (2s) - (s) = 150 MeV 350 spin 1/2 parity +  13.3.2007 Michal Praszalowicz, Krakow

What is the experimental status of light pentaquarks today? + 

LEPS and various conference proceedings e.g. T. Nakano MENU 2016

DIANA

dissidents from CLAS

disicalaimer from CLAS

What is the experimental status of light pentaquarks today? + 

NA 49

What is the experimental status of light pentaquarks today? + 

Pentanucleon? D. Werthmuller et al. [A2 Collaboration] Phys. Rev. Lett. 111 (2013) 23, 232001 Eur. Phys. J. A 49 (2013) 154 Phys. Rev. Rev. C 90 (2014) 015205 28.01.15 Michał Praszałowicz

Pentanucleon? M.V. Polyakov and A. Rathke, On photoexcitation of baryon anti-decuplet Eur. Phys. J. A 18 (2003) 691 natural (but not the only one) explanation if N* is a pentaquark

QCD: quarks and gluons many quark nonlocal interactions integrate out gluons many quark nonlocal interactions Lagrangian chirally symmetric approximation: manyq, nonl. 4q, local Nambu Jona Lasinio model spontaneous chiral symmetry breaking semibosonization: qqqq qq Chiral Quark Model M. Praszałowicz

Chiral Quark Soliton Model QCD vacuum:

Chiral Quark Soliton Model QCD vacuum:

Chiral Quark Soliton Model chiral symmetry breaking: chirally inv. manyquark int.

Chiral Quark Soliton Model adding vlence quarks: chirally inv. manyquark int.

Chiral Quark Soliton Model “classical” baryon: chirally inv. manyquark int. soliton configuration no quantum numbers except B

Chiral Quark Soliton Model “classical” baryon: = Nc × chiral symmetry breaking chirally inv. manyquark int. soliton configuration no quantum numbers except B color factorizes!

Chiral Quark Soliton Model baryon: chirally inv. manyquark int. soliton configuration no quantum numbers except B rotation generates flavor and spin

Mass formula first order perturbation in the strange quark mass O(1) corrections to Mcl do not allow for absolute mass predictions octet-decuplet splitting exotic-nonexotic splittings known ? first order perturbation in the strange quark mass and in Nc: x P.O. Mazur, M.A. Nowak, MP, Phys. Lett. 147B (1984) 137 E. Guadagnini, Nucl. Phys. B236 (1984) 35 S. Jain, S.R. Wadia, Nucl. Phys. B258 (1985) 713

Allowed states

Successful Phenomenology Ch.V. Christov et al. Prog. Part. Nucl. Phys. 37 (1996) 91 Successful Phenomenology In a ”model independent” approach one can get both good fits to the existing data (including very narrow light pentaquark Θ+) one can fix all necessary model parameters: M, I1, I2, α, β, γ

Successful Phenomenology Ch.V. Christov et al. Prog. Part. Nucl. Phys. 37 (1996) 91 Successful Phenomenology In a ”model independent” approach one can get both good fits to the existing data (including very narrow light pentaquark Θ+) one can fix all necessary model parameters: M, I1, I2, α, β, γ but also one can recover the NRQM result in a special limit NRQM limit = = squeezing the soliton to zero size MP, A. Blotz, K. Goeke Phys. Lett. B354 (1995) 415

NRQM Limit energy is calculated with respect to the vacuum: Diakonov, Petrov, Polyakov, Z.Phys A359 (97) 305 MP, A.Blotz K.Goeke, Phys.Lett.B354:415-422,1995 energy is calculated with respect to the vacuum:

NRQM Limit energy is calculated with respect to the vacuum: Diakonov, Petrov, Polyakov, Z.Phys A359 (97) 305 MP, A.Blotz K.Goeke, Phys.Lett.B354:415-422,1995 energy is calculated with respect to the vacuum:

NRQM Limit energy is calculated with respect to the vacuum: Diakonov, Petrov, Polyakov, Z.Phys A359 (97) 305 MP, A.Blotz K.Goeke, Phys.Lett.B354:415-422,1995 energy is calculated with respect to the vacuum: in the NRQM limit only valence level contributes

NRQM Limit energy is calculated with respect to the vacuum: Diakonov, Petrov, Polyakov, Z.Phys A359 (97) 305 MP, A.Blotz K.Goeke, Phys.Lett.B354:415-422,1995 energy is calculated with respect to the vacuum: in the NRQM limit only valence level contributes

NRQM Limit pentaquark width = 0 ! energy is calculated Diakonov, Petrov, Polyakov, Z.Phys A359 (97) 305 MP, A.Blotz K.Goeke, Phys.Lett.B354:415-422,1995 energy is calculated with respect to the vacuum: pentaquark width = 0 ! in the NRQM limit only valence level contributes

Soliton with Nc− 1 quarks if Nc is large, Nc- 1 is also large and one can use the same mean field arguments (Nc−1) × color factorizes! plus one heavy quark G.S. Yang, H.C. Kim, M.V. Polyakov, MP Phys. Rev. D94 (2016) 071502

Allowed SU(3) irreps. = (Nc−1)/3

Heavy Baryons: soliton + heavy Q

Splittings inside multiplets = SL one has to add h.f. interaction

Splittings inside multiplets Equal splittings within multiplets follow from Eckhart-Wigner theorem (GMO relations)

Splittings inside multiplets Equal splittings within multiplets follow from Eckhart-Wigner theorem (GMO relations) however the relation between the deltas does not follow from Eckhart-Wigner theorem

Splittings inside multiplets from the fits to the light sector we get: (exp.: 178 MeV) 13% (exp.: 121 MeV)

Splittings inside multiplets Successful phenomenology from the fits to the light sector we get: G.S. Yang, H.C. Kim, M.V. Polyakov, MP Phys. Rev. D94 (2016) 071502 (exp.: 178 MeV) 13% (exp.: 121 MeV)

Rotational excitations: heavy pentaquarks 2/3 H.C. Kim, M.V. Plyakov, MP arXiv:1704.04082 [hep-ph]

Rotational excitations: heavy pentaquarks soliton in 15 (quatroquark) (spin 1 < spin 0) + heavy quark: 1/2 + 3/2 2/3 H.C. Kim, M.V. Plyakov, MP arXiv:1704.04082 [hep-ph]

Rotational excitations: heavy pentaquarks soliton in 15 (quatroquark) (spin 1 < spin 0) + heavy quark: 1/2 + 3/2 2/3 H.C. Kim, M.V. Plyakov, MP arXiv:1704.04082 [hep-ph]

Decay constants H.C. Kim, M.V. Plyakov, MP arXiv:1704.04082 [hep-ph]

Decay constants Expectations: some decays will be suppressed In NRQM limit: Expectations: some decays will be suppressed H.C. Kim, M.V. Plyakov, MP arXiv:1704.04082 [hep-ph]

Quark excitations: non-exotic heavy baryons V. Petrov, Acta Phys. Pol. B47 (2016) 59

Quark excitations: non-exotic heavy baryons Rotations generate quantum numbers

One K=1 quark excited solitons

3bar excited heavy baryons add heavy quark total spin 1/2 and 3/2

3bar excited heavy baryons experimentally: add heavy quark total spin 1/2 and 3/2 hyprfine splitting different from the ground state

sextet excited baryons

sextet excited baryons excited Omega_Q spectrum, 5 states

5 states!

Five very narrow resonances, unknown quantum numbers

Scenario 1: all LHCb Omega’s are sextet states violates constraints:

Scenario 1: all LHCb Omega’s are sextet states violates constraints: similar problem in the quark models

Scenario 2 force sextet constraints

heavy states above Ξ + D threshold, large p.s. also to Ωc+ π, can be very wide =24

Two narrow heavy states states (1 MeV) above inerpreted as Ξ + D pentaquarks heavy states above Ξ + D threshold, large p.s. also to Ωc+ π, can be very wide =24

Consequences Omega’s form isospin triplet, easy to check experimentally

Consequences rich structure - many new states, also in the case of b baryons Omega’s form isospin triplet, easy to check experimentally

Conclusions naive QM admits heavy pentaquarks with naturally large width soliton models ARE quark models successful phenomenology in the light baryon sector in soliton models pentaquarks are naturally light in NR limit no decay of antidecuplet to ocet (!) LEPS and DIANA results stand null results put bounds on prod. mechanism rather than exclude 5q narrow structure in eta photoproduction on n – signature of 5q? confirmation or refutation of NA49 result needed heavy baryons can be desribed in terms of Nc-1 quark soliton two types of excitations: rotations: 15-bar (exotic) quark excitations (regular) two of the LHCb Omega_c states may be interpreted as 5q

Backup slides

Prediction for Ω*b Ω*c = 2764.5 ± 3.1 MeV (2765.9 ± 2.0) model – independent relation: satisfied for charm: Ω*c = 2764.5 ± 3.1 MeV (2765.9 ± 2.0)

Ω*b = 6079.8 ± 2.3 MeV (to be confirmed) Prediction for Ω*b model – independent relation: satisfied for charm: Ω*c = 2764.5 ± 3.1 MeV (2765.9 ± 2.0) Ω*b = 6079.8 ± 2.3 MeV (to be confirmed)

How narrow they are? Assume p-wave decay and extract coupling from Delta decay

ground state L = 0 spin 1/2 h.f. splitting 70 MeV spin 3/2 ss -diquark heavy quark h.f. splitting 70 MeV ss -diquark spin 3/2 heavy quark

spin 1/2, 3/2 spin 1/2, 3/2, 5/2 excited state L = 1 ss -diquark heavy quark ss -diquark spin 1/2, 3/2, 5/2 heavy quark

FIVE STATES as in LHCb ! spin 1/2, 3/2 spin 1/2, 3/2, 5/2 excited state L = 1 ss -diquark spin 1/2, 3/2 heavy quark FIVE STATES as in LHCb ! ss -diquark spin 1/2, 3/2, 5/2 heavy quark

Very narrow excited Ωc baryons Marek Karliner, Jonathan L. Rosner, e-Print: arXiv:1703.07774 take general spin potential, try sensible parameters, only 3 parameters: a2 + c, a1, b. does not work Six Ω0c states discovered by LHCb as new members of 1P and 2S charmed baryons Bing Chen, Xiang Liu, e-Print: arXiv:1704.02583 they have wave functions, so can calculate coefficients, calculate other known states. different mass ordering than KR, widths do not agree

Quantum numbers of recently discovered Ω0c baryons from lattice QCD M. Padmanath, Nilmani Mathur, e-Print: arXiv:1704.00259 h.f. splitting 70 MeV