Engineering Metrology and Instrumentation

Slides:



Advertisements
Similar presentations
Abrasive Machining and Finishing Operations
Advertisements

Chapter 14 Forging of Metals
Chapter 24 Machining Processes Used to Produce Various Shapes: Milling, Broaching, Sawing, and Filing; Gear Manufacturing Manufacturing, Engineering &
Chapter 13 Rolling of Metals
Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN © 2006 Pearson Education, Inc.,
Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN © 2006 Pearson Education, Inc.,
Quality Control.
Inside-, Depth-, and Height-Measuring Instruments
Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN © 2006 Pearson Education, Inc.,
Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN © 2006 Pearson Education, Inc.,
Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN © 2006 Pearson Education, Inc.,
Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN © 2006 Pearson Education, Inc.,
Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN © 2006 Pearson Education, Inc.,
Kurt Sorenson Derek Benavidez Colin Evans Steven Best
Metrology Metrology is the science of measurement Dimensional metrology is that branch of Metrology which deals with measurement of “dimensions“ of a part.
MEASUREMENT AND INSPECTION
Introduction to Precision Metrology
Composite Materials: Structure, General Properties and Applications
Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN © 2006 Pearson Education, Inc.,
Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN © 2006 Pearson Education, Inc.,
Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN © 2006 Pearson Education, Inc.,
Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN © 2006 Pearson Education, Inc.,
Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN © 2006 Pearson Education, Inc.,
Fundamentals of Machining
Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN © 2006 Pearson Education, Inc.,
Engineering Metrology and Instrumentation
Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN © 2006 Pearson Education, Inc.,
Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN © 2006 Pearson Education, Inc.,
Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN © 2006 Pearson Education, Inc.,
Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN © 2006 Pearson Education, Inc.,
Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN © 2006 Pearson Education, Inc.,
LINEAR MEASUREMENT.
5 Form Tolerances.
Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN © 2006 Pearson Education, Inc.,
LASER AND ADVANCES IN METROLOGY
Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN © 2006 Pearson Education, Inc.,
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. PowerPoint to accompany Krar Gill Smid Technology of Machine.
Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN © 2006 Pearson Education, Inc.,
Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN © 2006 Pearson Education, Inc.,
Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN © 2006 Pearson Education, Inc.,
Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN © 2006 Pearson Education, Inc.,
Measuring Instruments
CHAPTER 7 MEASUREING SYSTEMS AND TOOLS
Automotive Engines: Theory and Servicing, 7/e By James D. Halderman Copyright © 2011, 2009, 2005, 2001, 1997 Pearson Education, Inc., Upper Saddle River,
Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN © 2006 Pearson Education, Inc.,
Introduction to Precision Metrology
Metal-Casting Processes
Chapter 14 Forging of Metals
Chapter 13 Rolling of Metals
Rapid-Prototyping Operations
The Centre lathe Damian Keenan.
Chapter 24 Machining Processes Used to Produce Various Shapes: Milling, Broaching, Sawing, and Filing; Gear Manufacturing Manufacturing, Engineering &
Extrusion and Drawing of Metals
Chapter 14 Forging of Metals
SNS COLLEGE OF ENGINEERING
Geometric Dimensioning and Tolerancing (GD&T)
Advanced Machining Processes
Chapter 13 Rolling of Metals
Fundamentals of Metal Casting
Chapter 32 Brazing, Soldering, Adhesive-Bonding, and Mechanical-Fastening Processes Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian.
Machining Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN © 2006 Pearson Education,
MEASUREMENT AND INSPECTION
MEASUREMENT AND INSPECTION
MEASUREMENT AND INSPECTION
Chapter 13 Rolling of Metals
IENG 475: Computer-Controlled Manufacturing Systems
Metal Casting: Design, Materials, and Economics
Automotive Technology Principles, Diagnosis, and Service
Manufacturing Processes
Presentation transcript:

Engineering Metrology and Instrumentation Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Machine-Tool Slideway Figure 35.1 Cross-section of a machine-tool slideway. The width, depth. Angles, and other dimensions all must be produced amd measured accurately for the machine tool to function as expected. Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Analog and Digital Measuring Devices Figure 35.2 (a) A vernier (analog) micrometer. (b) A digital micrometer with a range of 0 to 1 in. (0 to 25 mm) and a resolution of 50 μin. (1.25μm). It is generally easier to read dimensions on this instrument compared to the analog micrometer. (c) Schematic illustration showing the integration of digital gages with microprocessors for real-time data acquisition for statistical process control. Source: (a) Courtesy of L.C. Starret Co. and (b) Courtesy of Mitutoyo Corp. Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Digital-Micrometer Depth Gage Figure 35.3 A digital micrometer depth gage. Source: Courtesy of Starret Co. Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Dial Indicator Uses Figure 35.4 Three uses of dial indicators: (a) roundess, (b) depth, and (c) multiple-dimension gaging of a part. Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Measuring Straightness Figure 35.5 Measuring straightness manually with (a) a knife-edge rule and (b) a dial indicator. Source: After F. T. Farago. Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Measuring Flatness Figure 35.6 (a) Interferometry method for measuring flatness using an optical flat. (b) Fringes on a flat, inclined surface. An optical flat resting on a perfectly flat workpiece surface will not split the light beam, and no fringes will be present. (c) Fringes on a surface with two inclinations. Note: the greater the incline, the closer together are the fringes. (d) Curved fringe patterns indicate curvatures on the workpiece surface. Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Measuring Roundness Figure 35.7 (a) Schematic illustration of out-of-roundess (exaggerated). Measuring roundess using (b) a V-block and dial indicator, (c) a round part supported on centers and rotated, and (d) circular tracing. Source: After F. T. Farago. Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Measuring Gear-Tooth Thickness and Profile Figure 35.8 Measuring gear-tooth thickness and profile with (a) a gear-tooth caliper and (b) pins or balls and a micrometer. Source: Courtesy of American Gear Manufacturers Association. Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Optical Contour Projector Figure 35.9 A bench-model horizontal-beam contour projector with a 16-in. diameter screen with 150-W tungsten halogen illumination. Source: Courtesy of L. S. Starrett Company, Precision Optical Division. Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Fixed Gages Figure 35.10 (a) Plug gage for holes with GO and NOT GO on opposite ends. (b) Plug gage with GO and NOT GO on one end. (c) Plain ring gages for gaging round rods. Note the difference in knurled surfaces to identify the two gages. (d) Snap gage with adjustable anvils. Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Air Gages (c) Figure 35.11 (a) Schematic illustration of the principle for an air gage. (b) Three types of plugs used for air gaging. The gage on the right is an air snap gage. (c) A conical head for air gaging; note the small air holes on the conical surface. Source: (b) Courtesy of Mahr Federal Inc. (c) Courtesy of Stotz Gaging Co. (b) Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Electronic Gage Figure 35.12 An electronic gage for measuring bore diameter. The measuring head is equipped with three carbide-tipped steel pins for wear resistance. The LED display reads 29.158 mm. Source: Courtesy of TESA SA. Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Electronic Gage Measuring Vertical Length Figure 35.13 An electronic vertical-length measuring instrument with a resolution of 1 μm (40 μin). Source: Courtesy of TESA SA. Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Laser Micrometers Figure 35.14 (a) and (b) Two types of measurements made with a laser scan micrometer. (c) Two types of laser micrometers. Note that the instrument in the front scans the part (placed in the opening) in one dimension; the larger instrument scans the part in two dimensions. Source: Courtesy of BETA LaserMike. Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Coordinate-Measuring Machine (b) (c) (d) Figure 35.15 (a) Schematic illustration of a coordinate-measuring machine. (b) A touch signal probe. (c) Examples of laser probes. (d) A coordinate-measuring machine with a complex part being measured. Source: (b) through (d) Courtesy of Mitutoyo Corp. Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Coordinate-Measuring Machine for Car Bodies Figure 35.16 A large coordinate-measuring machine with two heads measuring various dimensions on a car body. Source: Courtesy of Mitutoyo Corp. Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Tolerance Control Figure 35.17 Basic size, deviation, and tolerance on a shaft, according to the ISO system. Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Methods of Assigning Tolerances Figure 35.18 Various methods of assigning tolerances on a shaft: (a) bilateral tolerance, (b) unilateral tolerance, and (c) limit dimensions. Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Dimensional Tolerances as a Function of Part Size Figure 35.19 Dimensional tolerances as a function of part size for various manufacturing processes. Note that because many factors are involved, there is a broad range for tolerances. Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Dimensional Tolerance Range and Surface Roughness in Various Processes Figure 35.20 Dimensional tolerance range and surface roughness obtained in various manufacturing processes. These tolerance apply to a 25-mm (1-in.) workpiece dimeinsion. Source: After J. A. Schey. Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Engineering Drawing Symbols Figure 35.21 Geometric characteristic symbols to be indicated on engineering drawings of parts to be manufactured. Source: Courtesy of The American Society of Mechanical Engineers. Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.