A proton and an electron are in a constant electric field created by oppositely charged plates. You release the proton from the positive side and the.

Slides:



Advertisements
Similar presentations
ConcepTest 17.1a Electric Potential Energy I
Advertisements

Capacitors.
Chapter 23 Electric Potential
Chapter 24 Capacitance, Dielectrics, Electric Energy Storage
Electrical Energy and Electric Potential AP Physics C.
ConcepTest 16.1a Electric Charge I
AP Physics B Summer Course 年 AP 物理 B 暑假班 M Sittig Ch 20: Electrostatics.
Chapter Fourteen The Electric Field and the Electric Potential
1) Electric Charge I 1) one is positive, the other is negative 2) both are positive 3) both are negative 4) both are positive or both are negative Two.
Copyright © 2010 Pearson Education, Inc. ConcepTest Clicker Questions Chapter 20 Physics, 4 th Edition James S. Walker.
February 16, 2010 Potential Difference and Electric Potential.
UNIT 9 Electrostatics and Currents 1. Tuesday March 20 th 2 Electrostatics and Currents.
When a potential difference of 150 V is applied to the plates of a parallel-plate capacitor, the plates carry a surface charge density of 30.0 nC/cm2.
General Physics II, Lec 11, Discussion, By/ T.A. Eleyan 1 Review (Electrostatic)
A +Q-Q d 12 V +  device to store charge –(also stores energy) connect capacitor to battery (V) –plates become oppositely charged +Q/-Q Q = C V charge.
ConcepTest 16.1aElectric Potential Energy I ConcepTest 16.1a Electric Potential Energy Ielectron proton electron proton + - A proton and an electron are.
General Physics II, Lec 7, By/ T.A. Eleyan 1 Additional Questions ( The Electric Potential )
Norah Ali Al-moneef king saud university
ConcepTest 2.1a Electric Potential Energy I
Halliday/Resnick/Walker Fundamentals of Physics 8th edition
ConcepTest 16.1aElectric Potential Energy I ConcepTest 16.1a Electric Potential Energy Ielectron proton electron proton + - A proton and an electron are.
Physics 2102 Lecture 5 Electric Potential I Physics 2102
AP Physics: Electricity & Magnetism
Electric Potential Chapter 23 opener. We are used to voltage in our lives—a 12-volt car battery, 110 V or 220 V at home, 1.5 volt flashlight batteries,
ConcepTest 25.1 Capacitors
Electrical Energy and Electric Potential
ConcepTest 17.1a Electric Potential Energy I
Electric Potential and Electric Energy Chapter 17.
ConcepTest 20.1aElectric Potential Energy I ConcepTest 20.1a Electric Potential Energy I 1) proton 2) electron 3) both feel the same force 4) neither –
Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. Electric energy (Electric Potential Energy) Electric potential Gravitation.
Electrical Energy and Potential IB Physics. Electric Fields and WORK In order to bring two like charges near each other work must be done. In order to.
1 My Chapter 17 Lecture Outline. 2 Chapter 17: Electric Potential Electric Potential Energy Electric Potential How are the E-field and Electric Potential.
Chapter 22 Gauss’s Law Chapter 22 opener. Gauss’s law is an elegant relation between electric charge and electric field. It is more general than Coulomb’s.
Electric Energy and Capacitance
Capacitor C 1 is connected across a battery of 5 V. An identical capacitor C 2 is connected across a battery of 10 V. Which one has the most charge? C.
Which of these configurations gives V = 0 at all points on the y-axis? 4) all of the above 5) none of the above 10. Equipotential Surfaces III 1) x +2.
Chapter 18.2 Review Capacitance and Potential. 1. A 5 μF capacitor is connected to a 12 volt battery. What is the potential difference across the plates.
Copyright © 2009 Pearson Education, Inc. Chapter 23 Electric Potential.
Chapter 16 Electrical Energy and Capacitance Conceptual Quiz Questions.
1. ConcepTest 17.1aElectric Potential Energy I 1. ConcepTest 17.1a Electric Potential Energy I 1) proton 2) electron 3) both feel the same force 4) neither.
Electrical Energy and Potential
Copyright © 2009 Pearson Education, Inc. Chapter 23 Electric Potential.
Gauss’s Law and Electric Potential
A metal box with no net charge is placed in an initially uniform E field, as shown. What is the total charge on the inner surface ? Assume this surface.
Parallel Plates.
A.S – due Monday Reading reference: chapter 16.
1) Electric Charge I 1) one is positive, the other is negative 2) both are positive 3) both are negative 4) both are positive or both are negative Two.
Electrical Energy Fields Or Fields of Dreams 2. An electric charge changes the space around it so that other charges… Feel an electrical force – Electrical.
Chapter 13 Electric Energy and Capacitance. Electric Potential Energy The electrostatic force is a conservative force It is possible to define an electrical.
Electric Potential Energy and Potential Difference
Electrical Energy and Electric Potential
Physics: Principles with Applications, 6th edition
ConcepTest 17.1a Electric Potential Energy I
Aim: How do charges have an electric potential difference?
Electrical Energy, Potential and Capacitance
Electrical Energy and Potential
Topic 9.3 Electric Field, Potential, and Energy
ConcepTest 24.1c Electric Potential Energy III A proton and an electron are in a constant electric field created by oppositely charged plates.
IB Physics SL (Year Two) Wednesday, September 3, 2014
How much work must be done to bring three electrons from a great distance apart to within m from one another?
Unit 6: Electrostatics Concept Review
Chapter 22 Gauss’s Law Chapter 22 opener. Gauss’s law is an elegant relation between electric charge and electric field. It is more general than Coulomb’s.
Physics 2102 Lecture 06: THU 04 FEB
ConcepTest Clicker Questions College Physics, 7th Edition
1. ConcepTest 17.1a Electric Potential Energy I
Halliday/Resnick/Walker Fundamentals of Physics 8th edition
Electrical Energy and Electric Potential
Electrical Energy and Electric Potential
1. Electric Potential Energy I
Presentation transcript:

A proton and an electron are in a constant electric field created by oppositely charged plates. You release the proton from the positive side and the electron from the negative side. Which feels the larger electric force? 1) proton 2) electron 3) both feel the same force 4) neither – there is no force 5) they feel the same magnitude force but opposite direction electron proton + -

ConcepTest 20.1a Electric Potential Energy I A proton and an electron are in a constant electric field created by oppositely charged plates. You release the proton from the positive side and the electron from the negative side. Which feels the larger electric force? 1) proton 2) electron 3) both feel the same force 4) neither – there is no force 5) they feel the same magnitude force but opposite direction Since F = qE and the proton and electron have the same charge in magnitude, they both experience the same force. However, the forces point in opposite directions because the proton and electron are oppositely charged. electron proton + -

A proton and an electron are in a constant electric field created by oppositely charged plates. You release the proton from the positive side and the electron from the negative side. Which has the larger acceleration? 1) proton 2) electron 3) both feel the same acceleration 4) neither – there is no acceleration 5) they feel the same magnitude acceleration but opposite direction electron proton + -

ConcepTest 20.1b Electric Potential Energy II A proton and an electron are in a constant electric field created by oppositely charged plates. You release the proton from the positive side and the electron from the negative side. Which has the larger acceleration? 1) proton 2) electron 3) both feel the same acceleration 4) neither – there is no acceleration 5) they feel the same magnitude acceleration but opposite direction electron proton + - Since F = ma and the electron is much less massive than the proton, then the electron experiences the larger acceleration.

A proton and an electron are in a constant electric field created by oppositely charged plates. You release the proton from the positive side and the electron from the negative side. When it strikes the opposite plate, which one has more KE? 1) proton 2) electron 3) both acquire the same KE 4) neither – there is no change of KE 5) they both acquire the same KE but with opposite signs electron proton + -

ConcepTest 20.1c Electric Potential Energy III A proton and an electron are in a constant electric field created by oppositely charged plates. You release the proton from the positive side and the electron from the negative side. When it strikes the opposite plate, which one has more KE? 1) proton 2) electron 3) both acquire the same KE 4) neither – there is no change of KE 5) they both acquire the same KE but with opposite signs electron proton + - Since PE = qV and the proton and electron have the same charge in magnitude, they both have the same electric potential energy initially. Because energy is conserved, they both must have the same kinetic energy after they reach the opposite plate.

Which group of charges took more work to bring together from a very large initial distance apart? 2 +1 d +1 +2 d 1 3 Both took the same amount of work

ConcepTest 20.2 Work and Potential Energy Which group of charges took more work to bring together from a very large initial distance apart? 2 +1 d +1 +2 d 1 3 Both took the same amount of work For case 1: only 1 pair The work needed to assemble a collection of charges is the same as the total PE of those charges: For case 2: there are 3 pairs added over all pairs

A B 1) V > 0 What is the electric potential at point A? 2) V = 0

ConcepTest 20.3a Electric Potential I 1) V > 0 2) V = 0 3) V < 0 What is the electric potential at point A? A B Since Q2 (which is positive) is closer to point A than Q1 (which is negative) and since the total potential is equal to V1 + V2, then the total potential is positive.

A B 1) V > 0 What is the electric potential at point B? 2) V = 0

ConcepTest 20.3b Electric Potential II 1) V > 0 2) V = 0 3) V < 0 What is the electric potential at point B? A B Since Q2 and Q1 are equidistant from point B, and since they have equal and opposite charges, then the total potential is zero. Follow-up: What is the potential at the origin of the x-y axes?

1) E = 0 V = 0 2) E = 0 V  0 3) E  0 V  0 4) E  0 V = 0 5) E = V regardless of the value Four point charges are arranged at the corners of a square. Find the electric field E and the potential V at the center of the square. -Q +Q

ConcepTest 20.4 Hollywood Square 1) E = 0 V = 0 2) E = 0 V  0 3) E  0 V  0 4) E  0 V = 0 5) E = V regardless of the value Four point charges are arranged at the corners of a square. Find the electric field E and the potential V at the center of the square. The potential is zero: the scalar contributions from the two positive charges cancel the two minus charges. However, the contributions from the electric field add up as vectors, and they do not cancel (so it is non-zero). -Q +Q Follow-up: What is the direction of the electric field at the center?

1 3 2 4 +Q –Q At which point does V = 0? 5) all of them

ConcepTest 20.5a Equipotential Surfaces I 1 3 2 4 +Q –Q At which point does V = 0? 5) all of them All of the points are equidistant from both charges. Since the charges are equal and opposite, their contributions to the potential cancel out everywhere along the mid-plane between the charges. Follow-up: What is the direction of the electric field at all 4 points?

Which of these configurations gives V = 0 at all points on the x-axis? 1) x +2mC -2mC +1mC -1mC 2) 3) 4) all of the above 5) none of the above

ConcepTest 20.5b Equipotential Surfaces II Which of these configurations gives V = 0 at all points on the x-axis? 1) x +2mC -2mC +1mC -1mC 2) 3) 4) all of the above 5) none of the above Only in case (1), where opposite charges lie directly across the x-axis from each other, do the potentials from the two charges above the x-axis cancel the ones below the x-axis.

Which of these configurations gives V = 0 at all points on the y-axis? 1) x +2mC -2mC +1mC -1mC 2) 3) 4) all of the above 5) none of the above

ConcepTest 20.5c Equipotential Surfaces III Which of these configurations gives V = 0 at all points on the y-axis? 1) x +2mC -2mC +1mC -1mC 2) 3) 4) all of the above 5) none of the above Only in case (3), where opposite charges lie directly across the y-axis from each other, do the potentials from the two charges above the y-axis cancel the ones below the y-axis. Follow-up: Where is V = 0 for configuration #2?

A C Q B D E 1) A and C 2) B and E 3) B and D 4) C and E 5) no pair Which two points have the same potential? A C B D E Q

ConcepTest 20.6 Equipotential of Point Charge 1) A and C 2) B and E 3) B and D 4) C and E 5) no pair Which two points have the same potential? Since the potential of a point charge is: only points that are at the same distance from charge Q are at the same potential. This is true for points C and E. They lie on an Equipotential Surface. A C B D E Q Follow-up: Which point has the smallest potential?

1) P  1 2) P  2 3) P  3 4) P  4 5) all require the same amount of work Which requires the most work, to move a positive charge from P to points 1, 2, 3 or 4 ? All points are the same distance from P. P 1 2 3 4

ConcepTest 20.7a Work and Electric Potential I 5) all require the same amount of work Which requires the most work, to move a positive charge from P to points 1, 2, 3 or 4 ? All points are the same distance from P. P 1 2 3 4 For path #1, you have to push the positive charge against the E field, which is hard to do. By contrast, path #4 is the easiest, since the field does all the work.

1) P  1 2) P  2 3) P  3 4) P  4 5) all require the same amount of work Which requires zero work, to move a positive charge from P to points 1, 2, 3 or 4 ? All points are the same distance from P. P 1 2 3 4

ConcepTest 20.7b Work and Electric Potential II 5) all require the same amount of work Which requires zero work, to move a positive charge from P to points 1, 2, 3 or 4 ? All points are the same distance from P. For path #3, you are moving in a direction perpendicular to the field lines. This means you are moving along an equipotential, which requires no work (by definition). P 1 2 3 4 Follow-up: Which path requires the least work?

Capacitor C1 is connected across a battery of 5 V Capacitor C1 is connected across a battery of 5 V. An identical capacitor C2 is connected across a battery of 10 V. Which one has the most charge? 1) C1 2) C2 3) both have the same charge 4) it depends on other factors

ConcepTest 20.8 Capacitors Capacitor C1 is connected across a battery of 5 V. An identical capacitor C2 is connected across a battery of 10 V. Which one has the most charge? 1) C1 2) C2 3) both have the same charge 4) it depends on other factors Since Q = C V and the two capacitors are identical, the one that is connected to the greater voltage has the most charge, which is C2 in this case.

+Q –Q 1) increase the area of the plates 2) decrease separation between the plates 3) decrease the area of the plates 4) either (1) or (2) 5) either (2) or (3) What must be done to a capacitor in order to increase the amount of charge it can hold (for a constant voltage)? +Q –Q

ConcepTest 20.9a Varying Capacitance I 1) increase the area of the plates 2) decrease separation between the plates 3) decrease the area of the plates 4) either (1) or (2) 5) either (2) or (3) What must be done to a capacitor in order to increase the amount of charge it can hold (for a constant voltage)? +Q –Q Since Q = C V, in order to increase the charge that a capacitor can hold at constant voltage, one has to increase its capacitance. Since the capacitance is given by , that can be done by either increasing A or decreasing d.

+Q –Q 1) the voltage decreases 2) the voltage increases 3) the charge decreases 4) the charge increases 5) both voltage and charge change A parallel-plate capacitor initially has a voltage of 400 V and stays connected to the battery. If the plate spacing is now doubled, what happens? +Q –Q

ConcepTest 20.9b Varying Capacitance II 1) the voltage decreases 2) the voltage increases 3) the charge decreases 4) the charge increases 5) both voltage and charge change A parallel-plate capacitor initially has a voltage of 400 V and stays connected to the battery. If the plate spacing is now doubled, what happens? Since the battery stays connected, the voltage must remain constant ! Since , when the spacing d is doubled the capacitance C is halved. And since Q = C V, that means the charge must decrease. +Q –Q Follow-up: How do you increase the charge?

1) 100 V 2) 200 V 3) 400 V 4) 800 V 5) 1600 V A parallel-plate capacitor initially has a potential difference of 400 V and is then disconnected from the charging battery. If the plate spacing is now doubled (without changing Q), what is the new value of the voltage? +Q –Q

ConcepTest 20.9c Varying Capacitance III A parallel-plate capacitor initially has a potential difference of 400 V and is then disconnected from the charging battery. If the plate spacing is now doubled (without changing Q), what is the new value of the voltage? +Q –Q Once the battery is disconnected, Q has to remain constant, since no charge can flow either to or from the battery. Since , when the spacing d is doubled the capacitance C is halved. And since Q = C V, that means the voltage must double.