Fitting: Voting and the Hough Transform

Slides:



Advertisements
Similar presentations
Hough Transforms CSE 6367 – Computer Vision Vassilis Athitsos University of Texas at Arlington.
Advertisements

Fitting: The Hough transform. Voting schemes Let each feature vote for all the models that are compatible with it Hopefully the noise features will not.
Hough Transform Reading Watt, An edge is not a line... How can we detect lines ?
Segmentation (2): edge detection
Edge Detection CSE P 576 Larry Zitnick
Fitting: The Hough transform
Lecture 5 Hough transform and RANSAC
1 Model Fitting Hao Jiang Computer Science Department Oct 6, 2009.
CS 376b Introduction to Computer Vision 04 / 11 / 2008 Instructor: Michael Eckmann.
Announcements Mailing list: –you should have received messages Project 1 out today (due in two weeks)
Edge Detection Today’s reading Forsyth, chapters 8, 15.1
Fitting a Model to Data Reading: 15.1,
CS 376b Introduction to Computer Vision 04 / 14 / 2008 Instructor: Michael Eckmann.
Edge Detection Today’s readings Cipolla and Gee –supplemental: Forsyth, chapter 9Forsyth Watt, From Sandlot ScienceSandlot Science.
Fitting: The Hough transform
Edge Detection.
Robust estimation Problem: we want to determine the displacement (u,v) between pairs of images. We are given 100 points with a correlation score computed.
כמה מהתעשייה? מבנה הקורס השתנה Computer vision.
Computer Vision Spring ,-685 Instructor: S. Narasimhan Wean Hall 5409 T-R 10:30am – 11:50am.
October 8, 2013Computer Vision Lecture 11: The Hough Transform 1 Fitting Curve Models to Edges Most contours can be well described by combining several.
Fitting: The Hough transform. Voting schemes Let each feature vote for all the models that are compatible with it Hopefully the noise features will not.
HOUGH TRANSFORM Presentation by Sumit Tandon
HOUGH TRANSFORM & Line Fitting Introduction  HT performed after Edge Detection  It is a technique to isolate the curves of a given shape / shapes.
Fitting : Voting and the Hough Transform Monday, Feb 14 Prof. Kristen Grauman UT-Austin.
CS 1699: Intro to Computer Vision Matching and Fitting Prof. Adriana Kovashka University of Pittsburgh September 29, 2015.
Image Processing Edge detection Filtering: Noise suppresion.
Lecture 08 Detecting Shape Using Hough Transform Lecture 08 Detecting Shape Using Hough Transform Mata kuliah: T Computer Vision Tahun: 2010.
CS654: Digital Image Analysis Lecture 25: Hough Transform Slide credits: Guillermo Sapiro, Mubarak Shah, Derek Hoiem.
Fitting: The Hough transform
Many slides from Steve Seitz and Larry Zitnick
Edge Detection and Geometric Primitive Extraction Jinxiang Chai.
Fitting Thursday, Sept 24 Kristen Grauman UT-Austin.
1 Model Fitting Hao Jiang Computer Science Department Sept 30, 2014.
Hough Transform Procedure to find a shape in an image Shape can be described in parametric form Shapes in image correspond to a family of parametric solutions.
October 16, 2014Computer Vision Lecture 12: Image Segmentation II 1 Hough Transform The Hough transform is a very general technique for feature detection.
Fitting : Voting and the Hough Transform Thursday, September 17 th 2015 Devi Parikh Virginia Tech 1 Slide credit: Kristen Grauman Disclaimer: Many slides.
CS 2750: Machine Learning Linear Regression Prof. Adriana Kovashka University of Pittsburgh February 10, 2016.
Digital Image Processing Lecture 17: Segmentation: Canny Edge Detector & Hough Transform Prof. Charlene Tsai.
Detecting Image Features: Corner. Corners Given an image, denote the image gradient. C is symmetric with two positive eigenvalues. The eigenvalues give.
Hough Transform CS 691 E Spring Outline Hough transform Homography Reading: FP Chapter 15.1 (text) Some slides from Lazebnik.
Object Recognition. Segmentation –Roughly speaking, segmentation is to partition the images into meaningful parts that are relatively homogenous in certain.
Grouping and Segmentation. Sometimes edge detectors find the boundary pretty well.
HOUGH TRANSFORM.
CSSE463: Image Recognition Day 26
CS 2770: Computer Vision Fitting Models: Hough Transform & RANSAC
Segmentation by fitting a model: Hough transform and least squares
Line Fitting James Hayes.
Detection of discontinuity using
Fitting: The Hough transform
Image gradients and edges
Fitting: Voting and the Hough Transform (part 2)
CS 2750: Machine Learning Linear Regression
Fitting: Voting and the Hough Transform April 24th, 2018
Finding Lines in Images
Fitting Curve Models to Edges
Edge Detection CSE 455 Linda Shapiro.
CSSE463: Image Recognition Day 26
CSSE463: Image Recognition Day 26
Hough Transform.
Morphological Operators
Outline Announcement Perceptual organization, grouping, and segmentation Hough transform Read Chapter 17 of the textbook File: week14-m.ppt.
CSSE463: Image Recognition Day 27
CSSE463: Image Recognition Day 26
Edge Detection Today’s readings Cipolla and Gee Watt,
CSSE463: Image Recognition Day 26
Finding Line and Curve Segments from Edge Images
Introduction to Artificial Intelligence Lecture 22: Computer Vision II
Prof. Adriana Kovashka University of Pittsburgh September 26, 2019
Presentation transcript:

Fitting: Voting and the Hough Transform Tues Feb 14 Kristen Grauman UT Austin

Today Grouping : wrap up clustering algorithms See slides from last time Fitting : introduction to voting Slide credit: Kristen Grauman

Last time What are grouping problems in vision? Inspiration from human perception Gestalt properties Bottom-up segmentation via clustering Algorithms: Mode finding and mean shift: k-means, mean-shift Graph-based: normalized cuts Features: color, texture, … Quantization for texture summaries Slide credit: Kristen Grauman 3

Now: Fitting Want to associate a model with observed features [Fig from Marszalek & Schmid, 2007] For example, the model could be a line, a circle, or an arbitrary shape. Slide credit: Kristen Grauman

Fitting: Main idea Choose a parametric model to represent a set of features Membership criterion is not local Can’t tell whether a point belongs to a given model just by looking at that point Three main questions: What model represents this set of features best? Which of several model instances gets which feature? How many model instances are there? Computational complexity is important It is infeasible to examine every possible set of parameters and every possible combination of features Slide credit: L. Lazebnik

Example: Line fitting Why fit lines? Many objects characterized by presence of straight lines Wait, why aren’t we done just by running edge detection? Slide credit: Kristen Grauman

Difficulty of line fitting Extra edge points (clutter), multiple models: which points go with which line, if any? Only some parts of each line detected, and some parts are missing: how to find a line that bridges missing evidence? Noise in measured edge points, orientations: how to detect true underlying parameters? Slide credit: Kristen Grauman

Voting It’s not feasible to check all combinations of features by fitting a model to each possible subset. Voting is a general technique where we let the features vote for all models that are compatible with it. Cycle through features, cast votes for model parameters. Look for model parameters that receive a lot of votes. Noise & clutter features will cast votes too, but typically their votes should be inconsistent with the majority of “good” features. Slide credit: Kristen Grauman

Fitting lines: Hough transform Given points that belong to a line, what is the line? How many lines are there? Which points belong to which lines? Hough Transform is a voting technique that can be used to answer all of these questions. Main idea: 1. Record vote for each possible line on which each edge point lies. 2. Look for lines that get many votes. Slide credit: Kristen Grauman

Finding lines in an image: Hough space y b b0 x m0 m image space Hough (parameter) space Connection between image (x,y) and Hough (m,b) spaces A line in the image corresponds to a point in Hough space To go from image space to Hough space: given a set of points (x,y), find all (m,b) such that y = mx + b Slide credit: Steve Seitz

Finding lines in an image: Hough space y b y0 Answer: the solutions of b = -x0m + y0 this is a line in Hough space x0 x m image space Hough (parameter) space Connection between image (x,y) and Hough (m,b) spaces A line in the image corresponds to a point in Hough space To go from image space to Hough space: given a set of points (x,y), find all (m,b) such that y = mx + b What does a point (x0, y0) in the image space map to? Slide credit: Steve Seitz

Finding lines in an image: Hough space y b (x1, y1) y0 (x0, y0) b = –x1m + y1 x0 x m image space Hough (parameter) space What are the line parameters for the line that contains both (x0, y0) and (x1, y1)? It is the intersection of the lines b = –x0m + y0 and b = –x1m + y1

Finding lines in an image: Hough algorithm y b x m image space Hough (parameter) space How can we use this to find the most likely parameters (m,b) for the most prominent line in the image space? Let each edge point in image space vote for a set of possible parameters in Hough space Accumulate votes in discrete set of bins; parameters with the most votes indicate line in image space.

Polar representation for lines Issues with usual (m,b) parameter space: can take on infinite values, undefined for vertical lines. [0,0] Image columns : perpendicular distance from line to origin : angle the perpendicular makes with the x-axis Image rows Point in image space  sinusoid segment in Hough space Slide credit: Kristen Grauman

Hough transform algorithm Using the polar parameterization: Basic Hough transform algorithm Initialize H[d, ]=0 for each edge point I[x,y] in the image for  = [min to max ] // some quantization H[d, ] += 1 Find the value(s) of (d, ) where H[d, ] is maximum The detected line in the image is given by H: accumulator array (votes) d  Time complexity (in terms of number of votes per pt)? Source: Steve Seitz

Original image Canny edges Vote space and top peaks Slide credit: Kristen Grauman

Showing longest segments found Slide credit: Kristen Grauman

https://www.youtube.com/watch?v=ebfi7qOFLuo

Impact of noise on Hough d y x  Image space edge coordinates Votes What difficulty does this present for an implementation?

Impact of noise on Hough Image space edge coordinates Votes Here, everything appears to be “noise”, or random edge points, but we still see peaks in the vote space.

Extensions  = gradient at (x,y) Extension 1: Use the image gradient same for each edge point I[x,y] in the image  = gradient at (x,y) H[d, ] += 1 (Reduces degrees of freedom) Extension 2 give more votes for stronger edges Extension 3 change the sampling of (d, ) to give more/less resolution Extension 4 The same procedure can be used with circles, squares, or any other shape

Extensions Extension 1: Use the image gradient same for each edge point I[x,y] in the image compute unique (d, ) based on image gradient at (x,y) H[d, ] += 1 (Reduces degrees of freedom) Extension 2 give more votes for stronger edges (use magnitude of gradient) Extension 3 change the sampling of (d, ) to give more/less resolution Extension 4 The same procedure can be used with circles, squares, or any other shape… Source: Steve Seitz

Summary Clustering and segmentation algorithms Quantizing features Kmeans Mean shift Normalized cuts MRF for interactive Quantizing features Summarize spatial statistics over prototypical feature Fitting via voting Fitting vs. grouping Hough Transform for lines

Coming up Thursday: More on Hough transform Circles, arbitrary shapes Reminder: A2 is due next Friday