Radiation Damage TCAD Analysis of Low Gain Avalanche Detectors

Slides:



Advertisements
Similar presentations
Modeling and simulation of charge collection properties for 3D-Trench electrode detector Hao Ding a, Jianwei Chen a, Zheng Li a,b,c, *, Shaoan Yan a a.
Advertisements

New approach to simulate radiation damage to single-crystal diamonds with SILVACO TCAD Florian Kassel, Moritz Guthoff, Anne Dabrowski, Wim de Boer.
F.R.Palomo, et al.MOS Capacitor DDD Dosimeter 1/13 RD50 Workshop - CERN – November 2012 MOS Capacitor Displacement Damage Dose (DDD) Dosimeter F.R.
P. Fernández-Martínez – Optimized LGAD Periphery25 th RD50 Workshop, CERN Nov Centro Nacional de MicroelectrónicaInstituto de Microelectrónica.
Department of Physics VERTEX 2002 – Hawaii, 3-7 Nov Outline: Introduction ISE simulation of non-irradiated and irradiated devices Non-homogeneous.
Test of Pixel Sensors for the CMS experiment Amitava Roy Purdue University.
Simulation of Radiation Effects on Semiconductors
TCT+, eTCT and I-DLTS measurement setups at the CERN SSD Lab
On MCz SCSI after 24 GeV/c proton irradiation 12th RD50 Workshop Ljubljana, 2-4 June 2008 D. Creanza On behalf of the Bari and Pisa RD50 groups.
1 Semiconductor Detectors  It may be that when this class is taught 10 years on, we may only study semiconductor detectors  In general, silicon provides.
F.R.PalomoDevice Simulation Meeting 1/22 CERN 7th July New 3D Detectors.
Study of Behaviour of n-in-p Silicon Sensor Structures Before and After Irradiation Y. Unno, S. Mitsui, Y. Ikegami, S. Terada, K. Nakamura (KEK), O. Jinnouchi,
TCAD Simulations of Radiation Damage Effects at High Fluences in Silicon Detectors with Sentaurus TCAD D. Passeri(1,2), F. Moscatelli(2,3), A. Morozzi(1,2),
Hamburg University: Plans for SLHC Silicon Detector R&D Georg Steinbrück Wien Feb 20, 2008.
Trento, Feb.28, 2005 Workshop on p-type detectors 1 Comprehensive Radiation Damage Modeling of Silicon Detectors Petasecca M. 1,3, Moscatelli F. 1,2,3,
1 Development of radiation hard microstrip detectors for the CBM Experiment Sudeep Chatterji GSI Helmholtz Centre for Heavy Ion Research DPG Bonn 16 March,
Silicon detector processing and technology: Part II
Analysis of Edge and Surface TCTs for Irradiated 3D Silicon Strip Detectors Graeme Stewart a, R. Bates a, C. Corral b, M. Fantoba b, G. Kramberger c, G.
Status report on A 2D position sensitive microstrip sensor with charge division. A segmented Low Gain Avalanche Detector for tracking E. Currás, M. Fernández,
CERN, November 2005 Claudio Piemonte RD50 workshop Claudio Piemonte a, Maurizio Boscardin a, Alberto Pozza a, Sabina Ronchin a, Nicola Zorzi a, Gian-Franco.
Simulations of 3D detectors
25th RD50 Workshop (Bucharest) June 13th, Centro Nacional de MicroelectrónicaInstituto de Microelectrónica de Barcelona IMB-CNM, Barcelona (Spain)
1 Nicolo Cartiglia, INFN, Torino - RD50 - Santander, 2015 Timing performance of LGAD-UFSD 1.New results from the last CNM LGAD runs 2.A proposal for LGAD.
Charge Collection and Trapping in Epitaxial Silicon Detectors after Neutron-Irradiation Thomas Pöhlsen, Julian Becker, Eckhart Fretwurst, Robert Klanner,
1/14 Characterization of P-type Silicon Detectors Irradiated with Neutrons M.Miñano 1, J.P.Balbuena 2, C. García 1, S.González 1, C.Lacasta 1, V.Lacuesta.
New research activity “Silicon detectors modeling in RD50”: goals, tasks and the first steps Vladimir Eremin Ioffe Phisical – technical institute St. Petresburg,
Progress report on the validation of a Two- Photon Absorption based Transient-Current- Technique on irradiated silicon 26th RD50 Santander P.
9 th “Trento” Workshop on Advanced Silicon Radiation Detectors Genova, February 26-28, 2014 Centro Nacional de MicroelectrónicaInstituto de Microelectrónica.
Inversion Study on MCz-n and MCz-p silicon PAD detectors irradiated with 24 GeV/c protons Nicola Pacifico Excerpt from the MSc thesis Tutors: Prof. Mauro.
TCT measurements with SCP slim edge strip detectors Igor Mandić 1, Vladimir Cindro 1, Andrej Gorišek 1, Gregor Kramberger 1, Marko Milovanović 1, Marko.
Simulations of Hadron Irradiation Effects for Si Sensors Using Effective Bulk Damage Model A. Bhardwaj 1, H. Neugebauer 2, R. Dalal 1, M. Moll 2, Geetika.
Celso Figueiredo26/10/2015 Characterization and optimization of silicon sensors for intense radiation fields Traineeship project within the PH-DT-DD section.
Status of CNM RD50 LGAD Project27th RD50 Workshop, CERN 2-4 Dec Centro Nacional del MicroelectrónicaInstituto de Microelectrónica de Barcelona Status.
A CCE and TCT Study on low resistivity MCz p-on-n detectors Nicola Pacifico, Michael Moll, Manuel Fahrer 16 th RD50 workshop, Barcellona, 31 May-2 June.
The Sixth International "Hiroshima" Symposium Giulio Pellegrini Technology of p-type microstrip detectors with radiation hard p-spray, p-stop and moderate.
CNM double-sided 3D strip detectors before and after neutron irradiation Celeste Fleta, Richard Bates, Chris Parkes, David Pennicard, Lars Eklund (University.
TCAD Simulation – Semiconductor Technology Computer-Aided Design (TCAD) tool ENEXSS 5.5, developed by SELETE in Japan Device simulation part: HyDeLEOS.
Giulio Pellegrini 27th RD50 Workshop (CERN) 2-4 December 2015 Centro Nacional de MicroelectrónicaInstituto de Microelectrónica de Barcelona 1 Status of.
Simulation of new P-Type strip detectors 17th RD50 Workshop, CERN, Geneva 1/15 Centro Nacional de MicroelectrónicaInstituto de Microelectrónica de Barcelona.
Claudio Piemonte Firenze, oct RESMDD 04 Simulation, design, and manufacturing tests of single-type column 3D silicon detectors Claudio Piemonte.
P. Fernández-Martínez – Optimized LGAD PeripheryRESMDD14, Firenze 8-10 October Centro Nacional de MicroelectrónicaInstituto de Microelectrónica de.
G. PellegriniInstituto de Microelectrónica de Barcelona Status of LGAD RD50 projects at CNM28th RD50 Workshop (Torino) 1 Status of LGAD RD50 projects at.
Progress report on the validation of a Two- Photon Absorption based Transient-Current- Technique on irradiated silicon P. Castro 1, A. Díez 1, S. Hidalgo.
June T-CAD Simulations of 3D Microstrip detectors a) Richard Bates b) J.P. Balbuena,C. Fleta, G. Pellegrini, M. Lozano c) U. Parzefall, M. Kohler,
E-TCT measurements with laser beam directed parallel to strips Igor Mandić 1, Vladimir Cindro 1, Andrej Gorišek 1, Gregor Kramberger 1, Marko Mikuž 1,2,
TCT measurements of HV-CMOS test structures irradiated with neutrons I. Mandić 1, G. Kramberger 1, V. Cindro 1, A. Gorišek 1, B. Hiti 1, M. Mikuž 1,2,
TPA-TCT A novel Transient-Current-Technique based on the Two Photon Absorption process 25th RD50 CERN P. Castro 1, M. Fernández 1, J. González.
3D Simulation Studies of Irradiated BNL One-Sided Dual-column 3D Silicon Detector up to 1x1016 neq/cm2 Zheng Li1 and Tanja Palviainen2 1Brookhaven National.
24/02/2010Richard Bates, 5th Trento workshop, Manchester1 Irradiation studies of CNM double sided 3D detectors a. Richard Bates, C. Parkes, G. Stewart.
ILD Silicon Tracking Status Report
Radiation damage studies in LGAD detectors from recent CNM and FBK run
Simulation results from double-sided and standard 3D detectors
Simulation/modeling group – discussion session
Radiation Damage TCAD Analysis of Low Gain Avalanche Detectors
Characterization and modelling of signal dynamics in 3D-DDTC detectors
First production of Ultra-Fast Silicon Detectors at FBK
Modeling Radiation Damage Effects in Oxygenated Silicon Detectors
Irradiation and annealing study of 3D p-type strip detectors
Graeme Stewarta, R. Batesa, G. Pellegrinib, G. Krambergerc, M
Cint of un-irr./irradiated 200μm devices
RD50 Workshop June 2016, Torino, Italy
Study of radiation damage induced by 26MeV protons and reactor neutrons on heavily irradiated MCz, FZ and Epi silicon detectors N. Manna Dipartimento.
HG-Cal Simulation using Silvaco TCAD tool at Delhi University Chakresh Jain, Geetika Jain, Ranjeet Dalal, Ashutosh Bhardwaj, Kirti Ranjan CMS simulation.
A. Affolder, P. Allport, G. Casse University of Liverpool
SSD – Solid State Detectors
TCAD Simulations of Silicon Detectors operating at High Fluences D
Simulation of signal in irradiated silicon detectors
Vladimir Cindro, RD50 Workshop, Prague, June 26-28, 2006
Semiconductor Detectors
Forward-bias operation of FZ and MCz silicon detectors made with different geometries in view of their applications as radiation monitoring sensors J.
Presentation transcript:

Radiation Damage TCAD Analysis of Low Gain Avalanche Detectors F.R. Palomo1, S. Hidalgo2, I. Vila3, rogelio@zipi.us.es salvador.hidalgo@csic.es ivan.vila@csic.es 1Departamento Ingeniería Electrónica, Escuela Superior de Ingenieros Universidad de Sevilla, Spain 2Instituto de Microelectrónica de Barcelona, Centro Nacional de Microelectrónica, Barcelona, Spain 3Instituto de Física de Cantabria, Santander, Spain

ReadOut Simulation Setup Sentaurus TCAD Simulation SetUp Red Pulsed Laser Simulation Setup Mixed Simulation Setup: Red Pulsed Laser: 670 nm, 10 mm spot, 1e4W/cm2, 50 ps, BackIllumination at Device Center ReadOut: gain unity current amplifier (Rf=1), AC (1 nF) coupled 2D detector model: 1 mm in Z direction, 3 mm in X direction, 300 mm in Y direction) ReadOut Simulation Setup z x y P-Stop Collector Ring C-Stop Simulaciones Híbridas (transistor) Low Gain Avalanche Detector (LGAD) cross-section Doping profiles under confidenciality rules

The equivalent PiN is an LGAD device without Pwell (gain well) 4,26 5,52 4,88 LGAD current transient, variable bias & Total transient charge Gain 4.26, 4.88, 5.52 Gain=(QLGAD/QPiN )|bias LGAD Bias Analysis: 250V, 450V, 650V, Gain shows a linear increase with bias The equivalent PiN is an LGAD device without Pwell (gain well)

LGAD450V ElectronCurrentDensity450V ElectronImpactIonization450V (Laser pulse at 0.2 ns) Electrons rushing from the red laser pulse at the p+ layer towards the n+-pwell junction Maximum impact Ionization in the n+ pwell junction (5ns) Simulaciones Híbridas (transistor) Electron Current Density (A/cm2) and Electron Impact Ionization rate (s-1cm-3) for LGAD 450V bias

LGAD450V HoleCurrentDensity450V HoleImpactIonization450V (Laser pulse at 0.2 ns) Holes rushing from the n+ pwell junction towards the p+ electrode after electron arrival Hole Impact Ionization rate bigger in the n+ pwell junction Simulaciones Híbridas (transistor) Hole Current Density (A/cm2) and Holen Impact Ionization rate (s-1cm-3) for LGAD 450V bias

PiN 450V ElectronImpactIonizationPiN450V ElectronCurrentDensityPiN450V It also appears intrinsic impact ionization in the PiN (several orders of magnitud below the LGAD n+ - Pwell impact ionization) Electrons behave as in the LGAD device Simulaciones Híbridas (transistor) Electron Current Density (A/cm2) and Electron Impact Ionization rate (s-1cm-3) for PiN 450V bias

PiN 450V HoleCurrentDensityPiN450V HoleImpactIonizationPiN450V BUT there is no hole generation associated to avalanche in the n+ volumen (no Pwell) Intrinsic hole impact ionization rate is constant, neglible and independent of the laser pulse or the electron route to the n+ Simulaciones Híbridas (transistor) Hole Current Density (A/cm2) and Hole Impact Ionization rate (s-1cm-3) for PiN 450V bias

Radiation Damage Models Simulation of Silicon Devices for the CMS Phase II Tracker Upgrade CMS Note 250887 CMS Proton Model CMS Neutron Model Three damage models Pennicard Model f =1e12 up to 1e14 neq/cm2 CMS Proton and Neutron model f = 1e14-1e15 neq/cm2 Delhi Model Proton f = 1e14-1e15 neq/cm2 Pennicard Model Simulations of radiation-damaged 3D detectors for the Super-LHC, D.Pennicard et al. NIMA 592(1-2), 2008, pp16-25 Combined effect of bulk and Surface damage on strip insulation properties of proton irradiated n+-p silicon strip sensors, R.Dalal et al. JINST 2014 9 P04007 Delhi Model N(cm-3)=gint x f N(cm-3)=hint x f Simulaciones Híbridas (transistor)

LGAD Pulsed red laser transient, current amp readout (gain=1) Pennicard Damage Model LGAD 400V Bias Fluence Gain 4,80 1e12 4,72 1e13 4,54 1e14 3,36 Pennicard model valid up to 1e14 neq/cm2. It shows that LGAD does not experiment a significative gain reduction up to 1e14. At 1e14, gain decreases 29%. ## Putting traps in Silicon region only ## Trap concentrations found from Petasecca model and modified by D. Pennicard, Fluence=1E14 Physics (material="Silicon") { # Putting traps in silicon region only # Modified Perugia model with trapping times at reported value Traps ( (Acceptor Level EnergyMid=0.42 fromCondBand Conc=1.1613E14 Randomize=0.29 eXsection=9.5E-15 hXsection=9.5E-14) #Conc=Fluence*1.1613 (Acceptor Level EnergyMid=0.46 fromCondBand Conc=0.9E14 Randomize=0.23 eXsection=5E-15 hXsection=5E-14 ) #Conc=Fluence*0.9 (Donor Level EnergyMid=0.36 fromValBand Conc=0.9E14 Randomize=0.31 eXsection=3.23E-13 hXsection=3.23E-14 ) #Conc=Fluence*0.9 ) } Simulaciones Híbridas (transistor) (Reference PiN Charge 50.9 fC)

LGAD Pulsed red laser transient, current amp readout (gain=1) CMS Neutron Damage Model Fluence Charge (fC) Gain 244,0 4,80 1e14 186,1 3,66 1e15 30,7 0,60 ## Putting traps in Silicon region only ## Trap concentrations found from CMS Two level neutrons #Fluence=1E14 Physics (material="Silicon") { # Putting traps in silicon region only Traps ( (Acceptor Level EnergyMid=0.525 fromCondBand Conc=1.55E14 eXsection=1.2E-14 hXsection=1.2E-14) (Donor Level EnergyMid=0.48 fromValBand Conc=1.395E14 eXsection=1.2E-14 hXsection=1.2E-14) ) } PIN DIODE Non Irradiated Simulaciones Híbridas (transistor)

LGAD Pulsed red laser transient, current amp readout (gain=1) CMS Proton Damage Model Fluence Charge (fC) Gain 244,0 4,80 1e14 186,7 3,67 1e15 24,6 0,48 ## Putting traps in Silicon region only ## Trap concentrations found from CMS Two level protons #Fluence=1E14 Physics (material="Silicon") { # Putting traps in silicon region only Traps ( (Acceptor Level EnergyMid=0.525 fromCondBand Conc=1.8344E14 eXsection=1E-14 hXsection=1E-14) (Donor Level EnergyMid=0.48 fromValBand Conc=1.6390E14 eXsection=1E-14 hXsection=1E-14) ) } PIN DIODE Non Irradiated Poner valor PIN carga…

LGAD Pulsed red laser transient, current amp readout (gain=1) Delhi Damage Model Fluence Charge (fC) Gain 244,0 4,80 1e14 124,6 2,45 1e15 9,4 0,18 ## Putting traps in Silicon region only ## Trap concentrations found from Delhi Two level #Fluence=1E14 Physics (material="Silicon") { # Putting traps in silicon region only Traps ( (Acceptor Level EnergyMid=0.51 fromCondBand Conc=4E14 eXsection=2E-14 hXsection=3.8E-15) (Donor Level EnergyMid=0.48 fromValBand Conc=3E14 eXsection=2E-15 hXsection=2E-15) ) } PIN DIODE Non Irradiated Poner una flecha con el valor de la carga de referencia.

LGAD CMS Models Electric Field along Y axis Back side detail Simulaciones Híbridas (transistor) Front side detail Electric Field Profiling At 1e15 a double junction appears at P+ volume

LGAD Delhi Models Electric Field along Y axis Back side detail Simulaciones Híbridas (transistor) Front side detail Electric Field Profiling At 1e15 a double junction appears at P+ volume

LGAD model from CNM, with JTE, guard rings, p-stops and c-stops Conclusions LGAD model from CNM, with JTE, guard rings, p-stops and c-stops The device withstand radiation damage up to 1e14 neq/cm2 Fails approaching 1e15 neq/cm2 Main fail mechanism: double junction Simulaciones Híbridas (transistor)

Thanks for your attention fpalomo@us.es Simulaciones Híbridas (transistor)