Sara Thorin, MAX IV Laboratory

Slides:



Advertisements
Similar presentations
FEL and linac plans at MAX IV laboratory
Advertisements

Tessa Charles Australian Synchrotron / Monash University 1 Bunch Compression Schemes for X-band FELs.
1 Bates XFEL Linac and Bunch Compressor Dynamics 1. Linac Layout and General Beam Parameter 2. Bunch Compressor –System Details (RF, Magnet Chicane) –Linear.
Particle-Driven Plasma Wakefield Acceleration James Holloway University College London, London, UK PhD Supervisors: Professor Matthew wing University College.
Before aperture After aperture Faraday Cup Trigger Photodiode Laser Energy Meter Phosphor Screen Solenoids Successful Initial X-Band Photoinjector Electron.
New Electron Beam Test Facility EBTF at Daresbury Laboratory B.L. Militsyn on behalf of the ASTeC team Accelerator Science and Technology Centre Science.
FEL Beam Dynami cs FEL Beam Dynamics T. Limberg FEL driver linac operation with very short electron bunches.
Low Emittance RF Gun Developments for PAL-XFEL
~ gun3.9 GHz cavity Bunch compressor 3 ILC cryomodules 45 deg. spectro injector main linac user area disp. area transport line Overview of.
TTF2 Start-to-End Simulations Jean-Paul Carneiro DESY Hamburg TESLA COLLABORATION MEETING DESY Zeuthen, 22 Jan 2004.
High Current Electron Source for Cooling Jefferson Lab Internal MEIC Accelerator Design Review January 17, 2014 Riad Suleiman.
Paul Emma, et. al. Sep. 18, 2013 Paul Emma, et. al. Sep. 18, 2013 Design Considerations for the NGLS (Next Generation Light Source) NGLS.
Recent Experiments at PITZ ICFA Future Light Sources Sub-Panel Mini Workshop on Start-to-End Simulations of X-RAY FELs August 18-22, 2003 at DESY-Zeuthen,
FLASH II. The results from FLASH II tests Sven Ackermann FEL seminar Hamburg, April 23 th, 2013.
Beam Dynamics and FEL Simulations for FLASH Igor Zagorodnov and Martin Dohlus Beam Dynamics Meeting, DESY.
A bunch compressor design and several X-band FELs Yipeng Sun, ARD/SLAC , LCLS-II meeting.
Optics considerations for ERL test facilities Bruno Muratori ASTeC Daresbury Laboratory (M. Bowler, C. Gerth, F. Hannon, H. Owen, B. Shepherd, S. Smith,
Accelerator Science and Technology Centre Extended ALICE Injector J.W. McKenzie, B.D. Muratori, Y.M. Saveliev STFC Daresbury Laboratory,
W.S. Graves 2002 Berlin CSR workshop 1 Microbunching and CSR experiments at BNL’s Source Development Lab William S. Graves ICFA CSR Workshop Berlin, Jan.,
Electron Source Design Dr Tim Noakes ASTeC, STFC Daresbury Laboratory.
Twin bunches at FACET-II Zhen Zhang, Zhirong Huang, Ago Marinelli … FACET-II accelerator physics workshop Oct. 12, 2015.
J. Corlett. June 16, 2006 A Future Light Source for LBNL Facility Vision and R&D plan John Corlett ALS Scientific Advisory Committee Meeting June 16, 2006.
Construction, Commissioning, and Operation of Injector Test Facility (ITF) for the PAL-XFEL November 12, 2013 S. J. Park, J. H. Hong, C. K. Min, I. Y.
X-band Based FEL proposal
MAX IV linac overview and scope of automation Sara Thorin.
PAL-XFEL Commissioning Plan ver. 1.1, August 2015 PAL-XFEL Beam Dynamics Group.
B. Marchetti R. Assmann, U. Dorda, J. Grebenyuk, Y. Nie, J. Zhu Acknowledgements: C. Behrens, R. Brinkmann, K. Flöttmann, M. Hüning,
Bunch Shaping for Future Dielectric Wakefield Accelerators W. Gai Mini-Workshop on Deflecting/Crabbing RF Cavity Research and application in Accelerators.
ESLS Workshop Nov 2015 MAX IV 3 GeV Ring Commissioning Pedro F. Tavares & Åke Andersson, on behalf of the whole MAX IV team.
SABER Longitudinal Tracking Studies P. Emma, K. Bane Mar. 1, 2006
A 6 GeV Compact X-ray FEL (CXFEL) Driven by an X-Band Linac
Beam dynamics for an X-band LINAC driving a 1 keV FEL
Status of the MAX IV Short Pulse Facility
E-XFEL Status and First Beam Results
Plans of XFELO in Future ERL Facilities
An X-band system for phase space linearisation on CLARA
Slice Parameter Measurements at the SwissFEL Injector Test Facility
Status and Interest of the X-ray FEL SINAP
Tunable Electron Bunch Train Generation at Tsinghua University
Studies for Particle Driven Plasma Acceleration at PITZ
Gu Qiang For the project team
Paul Scherrer Institut
XFEL Beam Physics 10/30/2015 Tor Raubenheimer.
Linac optimisation for the New Light Source
Injection facility for Novosibirsk Super Charm Tau Factory
XFEL Project (accelerator) Overview and recent developments
Review of Application to SASE-FELs
F. Villa Laboratori Nazionali di Frascati - LNF On behalf of Sparc_lab
LCLS Linac Update Brief Overview L1 & BC1 Progress LTU & E-Dump Status Continuing Resolution Impact.
LCLS Commissioning Parameters
CEPC Injector Damping Ring
LCLS Commissioning Parameters
Advanced Research Electron Accelerator Laboratory
Two-bunch self-seeding for narrow-bandwidth hard x-ray FELs
Linac/BC1 Commissioning P
LCLS Linac Overview E. Bong Lehman Review August 10, 2004
Modified Beam Parameter Range
Longitudinal-to-transverse mapping and emittance transfer
Longitudinal-to-transverse mapping and emittance transfer
CLIC Feasibility Demonstration at CTF3
Injector Experimental Results John Schmerge, SSRL/SLAC April 24, 2002
Linac Physics, Diagnostics, and Commissioning Strategy P
LCLS FEL Parameters Heinz-Dieter Nuhn, SLAC / SSRL April 23, 2002
Simulations for the LCLS Photo-Injector C
Operational Experience with LCLS RF systems
LCLS Injector Commissioning P
Proposal for Smith-Purcell radiation experiment at SPARC_LAB
J. Seeman Perugia Super-B Meeting June 2009
Linac Design Update P. Emma LCLS DOE Review May 11, 2005 LCLS.
Electron Optics & Bunch Compression
Presentation transcript:

Sara Thorin, MAX IV Laboratory Experience of bunch compression with linearising achromats in the MAX IV Linac Sara Thorin, MAX IV Laboratory

MAX IV 1.5 GeV ring – circumference 96 m SPF Linac 1.5 GeV ring – circumference 96 m 3 GeV ring – circumference 528 m Linac 250 m long 13 beamlines funded 26 beamlines in 2026 Short Pulse Facility Funded 2009 Inauguration summer 2016

MAX IV linac overview <0.25 % Thermionic RF gun Photo cathode RF gun Extraction 1.5 GeV BC1 @ 260 MeV Extraction 3 GeV Full energy injection and top up operation for the two storage rings SPF BC2 @ 3 GeV Design Currently Energy 1.5 GeV/ 3GeV Repetition rate 10 Hz 2 Hz Charge 0.6-1 nC/shot 0.3 nC/shot Emittance 10 mm mrad 5 mm mrad Energy spread <0.2% <0.25 %

MAX IV linac overview <0.25 % 0.05-0.5% Thermionic RF gun Photo cathode RF gun Extraction 1.5 GeV BC1 @ 260 MeV Extraction 3 GeV Full energy injection and top up operation for the two storage rings SPF BC2 @ 3 GeV High brightness driver for the Short Pulse Facility Design Currently Energy 1.5 GeV/ 3GeV Repetition rate 10 Hz 2 Hz Charge 0.6-1 nC/shot 0.3 nC/shot Emittance 10 mm mrad 5 mm mrad Energy spread <0.2% <0.25 % Design Currently Energy 3GeV 3 GeV Repetition rate 100 Hz 2 Hz Charge 100 pC 100-300 pC Bunch length (rms) 100 fs 3 ps – 300 fs Emittance 1 mm mrad 1-3 mm mrad Energy spread <0.4% 0.05-0.5%

MAX IV linac overview <0.25 % 0.05-0.5% Thermionic RF gun Photo cathode RF gun Extraction 1.5 GeV BC1 @ 260 MeV Extraction 3 GeV Full energy injection and top up operation for the two storage rings SPF BC2 @ 3 GeV High brightness driver for the Short Pulse Facility Design Currently Energy 1.5 GeV/ 3GeV Repetition rate 10 Hz 2 Hz Charge 0.6-1 nC/shot 0.3 nC/shot Emittance 10 mm mrad 5 mm mrad Energy spread <0.2% <0.25 % Design Currently Energy 3GeV 3 GeV Repetition rate 100 Hz 2 Hz Charge 100 pC 100-300 pC Bunch length (rms) 100 fs 3 ps – 300 fs Emittance 1 mm mrad 1-3 mm mrad Energy spread <0.4% 0.05-0.5% Possible future Free Electron Laser

MAX IV linac timeline 2010 2011 2012 2013 2014 2015 2016 2017 Linac building Linac installation Linac commissioning Linac operation

MAX IV linac timeline 2010 2011 2012 2013 2014 2015 2016 2017 Linac building Linac installation Linac commissioning Linac operation

MAX IV linac timeline Inauguration 2010 2011 2012 2013 2014 2015 2016 2017 Linac building Linac installation Linac commissioning Linac operation Inauguration The MAX IV linac is now routinely delivering injection and top up to both storagerings, and short pulses to the SPF.

MAX IV linac MAX IV linac layout Kicker & septum Extraction 3 GeV BC1 @ 260 MeV SPF BC2 @ 3 GeV MAX IV linac layout Extraction 1.5 GeV L2A L2B L3A L9B L19B L1B L0 Thermionic RF gun Photo cathode RF gun 39 warm s-band linac structures + SLED 20 units 3 GHz 5.3 m/linac 20 MV/m gradient 3 + 0.4 GeV 20 modulators + klystrons 37 MW peak power 4.5 ms 100 Hz Thermionic gun: 8 MW 10 Hz RF unit Sits in two different tunnels

MAX IV linac MAX IV linac layout Kicker & septum Extraction 3 GeV BC1 @ 260 MeV SPF BC2 @ 3 GeV MAX IV linac layout Extraction 1.5 GeV L2A L2B L3A L9B L19B L1B L0 Thermionic RF gun Photo cathode RF gun 39 warm s-band linac structures + SLED 20 units 3 GHz 5.3 m/linac 20 MV/m gradient 3 + 0.4 GeV 20 modulators + klystrons 37 MW peak power 4.5 ms 100 Hz Thermionic gun: 8 MW 10 Hz RF unit Sits in two different tunnels

MAX IV linac MAX IV linac layout Kicker & septum Extraction 3 GeV BC1 @ 260 MeV SPF BC2 @ 3 GeV MAX IV linac layout Extraction 1.5 GeV L2A L2B L3A L9B L19B L1B L0 Thermionic RF gun Photo cathode RF gun 39 warm s-band linac structures + SLED 20 units 3 GHz 5.3 m/linac 20 MV/m gradient 3 + 0.4 GeV 20 modulators + klystrons 37 MW peak power 4.5 ms 100 Hz Thermionic gun: 8 MW 10 Hz RF unit Sits in two different tunnels

MAX IV linac Wanted: Short pulses for SPF and possible future FEL Had: No money for it Kicker & septum Extraction 3 GeV BC1 @ 260 MeV SPF BC2 @ 3 GeV MAX IV linac layout Extraction 1.5 GeV L2A L2B L3A L9B L19B L1B L0 Thermionic RF gun Photo cathode RF gun 39 warm s-band linac structures + SLED 20 units 3 GHz 5.3 m/linac 20 MV/m gradient 3 + 0.4 GeV 20 modulators + klystrons 37 MW peak power 4.5 ms 100 Hz Thermionic gun: 8 MW 10 Hz RF unit Sits in two different tunnels

Bunch compressors – self-linearising double achromats 2 4 6 8 10 12 X[m] -2 Y[m] quad dipole sext BC1 R56 > 0 T566 > 0 z E Emean BC1 BC2 R56 2.23 cm 2.6 cm T566 8.05 cm 4.26 cm

Bunch compressors Why self linearising compression? economy reliability simplicity Why compression in double achromats? positive R56 (fixed) positive T566 for linearisation “weak” sextupoles for tuning symmetry → small energy depending matrix elements beam spreader 2 4 6 8 10 12 X[m] -2 Y[m] quad dipole sext BC1 Longitudinal wakefield influence The wakes will enhance the chirp The more we compress in BC1, the stronger the chirp gets in the main linac Residual chirp at the end of the linac

Simulation results - SPF-pulse Gun – 1st linac: ASTRA Linac + compressors: ELEGANT Charge 100 pC Δt fwhm 100 fs Peak current 1.5 kA Compression factor 50 Slice εN 0.42 mm mrad Proj εN 0.55 mm mrad Emittance increase 5 % Slice ΔE/E 0.035 %

Simulation results - full compression Gun – 1st linac: ASTRA Linac + compressors: ELEGANT Charge 100 pC Δt fwhm 10 fs Peak current 14 kA Compression factor 500 Slice εN 1.5 mm mrad Proj εN 2.4 mm mrad Emittance increase (slice) 375 % Slice ΔE/E 0.25 %

Relative bunch length measurements with horn antennas Kicker & septum Extraction 3 GeV BC1 @ 260 MeV SPF BC2 @ 3 GeV MAX IV linac layout Extraction 1.5 GeV L2A L2B L3A L9B L19B L1B L0 Thermionic RF gun Photo cathode RF gun ~170 GHz ~250 GHz D. Olsson reproduced a benchmark model of FERMI gap + photodiode

Relative bunch length measurements with horn antennas Kicker & septum Extraction 3 GeV BC1 @ 260 MeV SPF BC2 @ 3 GeV MAX IV linac layout Extraction 1.5 GeV L2A L2B L3A L9B L19B L1B L0 Thermionic RF gun Photo cathode RF gun Effects of wakefield enhancement of chirp ~ 300 fs @ plateau after BC1 ~ 200 fs @ plateau after BC2

Measurement parameters Longitudinal profile measurement with variant of the zero-crossing method Kicker & septum Extraction 3 GeV BC1 @ 260 MeV SPF BC2 @ 3 GeV MAX IV linac layout Extraction 1.5 GeV L2A L2B L3A L9B L19B L1B L0 Thermionic RF gun Photo cathode RF gun Main linac 20o off crest Beam compressed in BC1 Screen at maximum dispersion BC2 Measurement parameters Compression energy 265 MeV Final Energy 2.98 GeV Compression phase Scanned 0-50 degrees off crest Initial electron bunch length rms 3 ps Charge 100 pC Dispersion at the screen 0.32 m Sextupole value K2 = 35 m-3 Dispersion Off crest phase Δx → Δt

Longitudinal profile measurement with variant of the zero-crossing method Kicker & septum Extraction 3 GeV BC1 @ 260 MeV SPF BC2 @ 3 GeV MAX IV linac layout Extraction 1.5 GeV L2A L2B L3A L9B L19B L1B L0 Thermionic RF gun Photo cathode RF gun

Longitudinal profile measurement with variant of the zero-crossing method Kicker & septum Extraction 3 GeV BC1 @ 260 MeV SPF BC2 @ 3 GeV MAX IV linac layout Extraction 1.5 GeV L2A L2B L3A L9B L19B L1B L0 Thermionic RF gun Photo cathode RF gun

Longitudinal profile measurement with variant of the zero-crossing method Kicker & septum Extraction 3 GeV BC1 @ 260 MeV SPF BC2 @ 3 GeV MAX IV linac layout Extraction 1.5 GeV L2A L2B L3A L9B L19B L1B L0 Thermionic RF gun Photo cathode RF gun

Bunch compression – sextupole dependence Intensity [A.U.]] Pixels

Longitudinal profile measurement with variant of the zero-crossing method Kicker & septum Extraction 3 GeV BC1 @ 260 MeV SPF BC2 @ 3 GeV MAX IV linac layout Extraction 1.5 GeV L2A L2B L3A L9B L19B L1B L0 Thermionic RF gun Photo cathode RF gun

Longitudinal profile measurement with variant of the zero-crossing method Kicker & septum Extraction 3 GeV BC1 @ 260 MeV SPF BC2 @ 3 GeV MAX IV linac layout Extraction 1.5 GeV L2A L2B L3A L9B L19B L1B L0 Thermionic RF gun Photo cathode RF gun Not fully linearised at high compression after BC1

Comparing off crest measurements with simulations FWHM Sigma values

Comparing off crest measurements with simulations FWHM Sigma values

Comparing off crest measurements with horn antennas and simulations FWHM Sigma values Horn antenna Off crest measurement Elegant Horn antenna Off crest measurement Elegant

Non-thermal melting of InSb in crossed-beam geometry at FemtoMAX Short pulse+ Lindenberg model 400 fs pulse+ Lindenberg model Repetition of SPPS experiment to estimate pulse duration. Non-thermal melting in InSb. A. Lindenberg, J. Larsson, K. Sokolowski-Tinten. K. Gaffney & SPPS Collab., Science 308, 392 (2005).

Summary and outlook Kicker & septum Extraction 3 GeV BC1 @ 260 MeV SPF BC2 @ 3 GeV MAX IV linac layout Extraction 1.5 GeV L2A L2B L3A L9B L19B L1B L0 Thermionic RF gun Photo cathode RF gun Horn antenna measurements indicate a bunch length below 300 fs after BC1 and below 200 fs after BC2 Measurements of longitudinal phase space in BC2 shows a current spike at 160 fs, after compression in BC1 Measurements of longitudinal phase space could be done after the beam dump magnet. Design and construction of a transverse deflecting cavity is in progress

Outlook and summary Kicker & septum Extraction 3 GeV BC1 @ 260 MeV SPF BC2 @ 3 GeV MAX IV linac layout Extraction 1.5 GeV L2A L2B L3A L9B L19B L1B L0 Thermionic RF gun Photo cathode RF gun BC2 @ 3 GeV U FemtoMAX (SPF) Soft X-ray FEL (SXL) U U U The science case for Swedish X-ray Lasers Collaboration between MAX IV Laboratory, the Lund Laser Centre, the Stockholm-Uppsala FEL Centre, and Uppsala University More than 40 proposals for science case http://www.llc.lu.se/sxlf Design report for a Soft X-ray FEL will most likely be funded.

Wakefield acceleration Outlook and summary Kicker & septum Extraction 3 GeV BC1 @ 260 MeV SPF BC2 @ 3 GeV MAX IV linac layout Extraction 1.5 GeV L2A L2B L3A L9B L19B L1B L0 Thermionic RF gun Photo cathode RF gun Wakefield acceleration BC2 @ 3 GeV U FemtoMAX (SPF) Soft X-ray FEL (SXL) U U U Design report for a Soft X-ray FEL will most likely be funded. We have started looking at the possibility for a wakefield acceleration experiment, O. Lund, Lund Laser Center