Abdulmotaleb El Saddik University of Ottawa

Slides:



Advertisements
Similar presentations
© 2006 Pearson Education Chapter 8: Recursion Presentation slides for Java Software Solutions for AP* Computer Science A 2nd Edition by John Lewis, William.
Advertisements

© 2011 Pearson Education, publishing as Addison-Wesley Chapter 8: Recursion Presentation slides for Java Software Solutions for AP* Computer Science 3rd.
Chapter 17 Recursion.
© 2010 Pearson Addison-Wesley. All rights reserved. Addison Wesley is an imprint of CHAPTER 7: Recursion Java Software Structures: Designing and Using.
Chapter 8: Recursion Java Software Solutions
Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Java Software Solutions Foundations of Program Design Sixth Edition by Lewis.
Scott Grissom, copyright 2004 Chapter 5 Slide 1 Analysis of Algorithms (Ch 5) Chapter 5 focuses on: algorithm analysis searching algorithms sorting algorithms.
1 Recursion  Recursion is a fundamental programming technique that can provide an elegant solution certain kinds of problems  Chapter 11 of the book.
Chapter 10 Recursion. Copyright © 2005 Pearson Addison-Wesley. All rights reserved Chapter Objectives Explain the underlying concepts of recursion.
Chapter Day 25. © 2007 Pearson Addison-Wesley. All rights reserved Agenda Day 25 Problem set 5 Posted (Last one)  Due Dec 8 Capstones Schedule  3rd.
ELC 310 Day 24. © 2004 Pearson Addison-Wesley. All rights reserved11-2 Agenda Questions? Problem set 5 Parts A Corrected  Good results Problem set 5.
Chapter 15 Recursive Algorithms. 2 Recursion Recursion is a programming technique in which a method can call itself to solve a problem A recursive definition.
CHAPTER 10 Recursion. 2 Recursive Thinking Recursion is a programming technique in which a method can call itself to solve a problem A recursive definition.
Chapter 11 Recursion. © 2004 Pearson Addison-Wesley. All rights reserved11-2 Recursion Recursion is a fundamental programming technique that can provide.
Recursion Chapter 5.
© 2004 Pearson Addison-Wesley. All rights reserved October 27, 2006 Recursion (part 2) ComS 207: Programming I (in Java) Iowa State University, FALL 2006.
Chapter 7 Arrays. © 2004 Pearson Addison-Wesley. All rights reserved11-2 Arrays Arrays are objects that help us organize large amounts of information.
M180: Data Structures & Algorithms in Java
CHAPTER 02 Recursion Compiled by: Dr. Mohammad Omar Alhawarat.
Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Java Software Solutions Foundations of Program Design Sixth Edition by Lewis.
Instructor: Alexander Stoytchev CprE 185: Intro to Problem Solving (using C)
Review Introduction to Searching External and Internal Searching Types of Searching Linear or sequential search Binary Search Algorithms for Linear Search.
Chapter 8 Recursion Modified.
Chapter 4 Recursion. Copyright © 2004 Pearson Addison-Wesley. All rights reserved.1-2 Chapter Objectives Explain the underlying concepts of recursion.
CSE 501N Fall ‘09 12: Recursion and Recursive Algorithms 8 October 2009 Nick Leidenfrost.
11-1 Recursive Thinking A recursive definition is one which uses the word or concept being defined in the definition itself When defining an English word,
Lecture 7 b Recursion is a fundamental programming technique that can provide an elegant solution to certain kinds of problems b Today: thinking in a recursive.
Java Programming: Guided Learning with Early Objects Chapter 11 Recursion.
Instructor: Alexander Stoytchev CprE 185: Intro to Problem Solving (using C)
© 2011 Pearson Education, publishing as Addison-Wesley Chapter 8: Recursion Presentation slides for Java Software Solutions for AP* Computer Science 3rd.
1 Recursion Recursion is a powerful programming technique that provides elegant solutions to certain problems. Chapter 11 focuses on explaining the underlying.
Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Chapter 12 Recursion.
Recursion A recursive definition is one which uses the word or concept being defined in the definition itself Example: “A computer is a machine.
Recursion Chapter 17 Instructor: Scott Kristjanson CMPT 125/125 SFU Burnaby, Fall 2013.
JAVA: An Introduction to Problem Solving & Programming, 7 th Ed. By Walter Savitch ISBN © 2015 Pearson Education, Inc., Upper Saddle River,
1 Recursion Recursive function: a function that calls itself (directly or indirectly). Recursion is often a good alternative to iteration (loops). Its.
Recursion Chapter What is recursion? Recursion occurs when a method calls itself, either directly or indirectly. Used to solve difficult, repetitive.
Recursion Chapter 10 Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved X.
COS 312 DAY 24 Tony Gauvin. Ch 1 -2 Agenda Questions? Assignment 6 Corrected Assignment 7 (bonus) – Due May 11 – Will be scored on 15 point scale, points.
Recursion.
Recursion Recursion is a fundamental programming technique that can provide an elegant solution certain kinds of problems © 2004 Pearson Addison-Wesley.
Chapter Topics Chapter 16 discusses the following main topics:
Recursion -- Introduction
Chapter 15 Recursion.
CprE 185: Intro to Problem Solving (using C)
Chapter 15 Recursion.
Recursive Thinking Chapter 9 introduces the technique of recursive programming. As you have seen, recursive programming involves spotting smaller occurrences.
Chapter 8: Recursion Java Software Solutions
Java Software Structures: John Lewis & Joseph Chase
Recursive Thinking Chapter 9 introduces the technique of recursive programming. As you have seen, recursive programming involves spotting smaller occurrences.
Recursive Definitions
Chapter 12 Recursion (methods calling themselves)
Recursion (part 2) October 26, 2007 ComS 207: Programming I (in Java)
Recursion Chapter 11.
Abdulmotaleb El Saddik University of Ottawa
Chapter 8: Recursion Java Software Solutions
Chapter 8 Recursion.
Recursion (part 1) October 24, 2007 ComS 207: Programming I (in Java)
Unit 3 Test: Friday.
Chapter 11 Recursion.
Chapter 8: Recursion Java Software Solutions
11 Recursion Software Solutions Lewis & Loftus java 5TH EDITION
Dr. Sampath Jayarathna Cal Poly Pomona
Recursion (part 2) March 22, 2006 ComS 207: Programming I (in Java)
Java Software Solutions Foundations of Program Design Sixth Edition
Recursion (part 1) October 25, 2006 ComS 207: Programming I (in Java)
Presentation transcript:

Abdulmotaleb El Saddik University of Ottawa CSI 1102 Abdulmotaleb El Saddik University of Ottawa School of Information Technology and Engineering (SITE) Multimedia Communications Research Laboratory (MCRLab) Distributed Collaborative Virtual Environments (DISCOVER) abed @ mcrlab.uottawa.ca http://www.mcrlab.uottawa.ca/

Presentation slides for Introduction to Software Design Chapter 11: Recursion Presentation slides for Introduction to Software Design

Midterm Average Group AA = 12.04 Group AB = 12.79 Average = 12.4

Recursion Recursion is a fundamental programming technique that can provide elegant solutions certain kinds of problems Chapter 11 focuses on: thinking in a recursive manner programming in a recursive manner the correct use of recursion examples using recursion

Recursive Thinking Up to know we saw methods that call other methods to accomplish a goal. Recursion is a programming technique in which a method can call itself to solve a problem A recursive definition is one which uses the word or concept being defined in the definition itself; when defining an English word, a recursive definition usually is not helpful Decoration: any ornament or adornment that decorates something

Recursive Thinking But in other situations, a recursive definition can be an appropriate way to express a concept Before applying recursion to programming, it is best to practice thinking recursively

Recursive Definitions Consider the following list of numbers: 24, 88, 40, 37 A list can be defined recursively A LIST is a: number or a: number comma LIST That is, a LIST is defined to be a single number, or a number followed by a comma followed by a LIST The concept of a LIST is used to define itself

Recursive Definitions The recursive part of the LIST definition is used several times, ultimately terminating with the non-recursive part: number comma LIST 24 , 88, 40, 37 88 , 40, 37 40 , 37 number 37 The last element in the list is always defined by the non-recursive part of the definition

Infinite Recursion All recursive definitions must have a non-recursive part If they don't, there is no way to terminate the recursive path A definition without a non-recursive part causes infinite recursion This problem is similar to an infinite loop with the definition itself causing the infinite “loop” The non-recursive part often is called the base case

Recursive Definitions Mathematical formulas often are expressed recursively N!, for any positive integer N, is defined to be the product of all integers between 1 and N inclusive This definition can be expressed recursively as: 1! = 1 N! = N * (N-1)! (N > 1) The concept of the factorial is defined in terms of another factorial until the base case of 1! is reached

Recursive Definitions 5! 5 * 4! 4 * 3! 3 * 2! 2 * 1! 1 2 6 24 120

Recursive Programming A method in Java can invoke itself; if set up that way, it is called a recursive method The code of a recursive method must be structured to handle both the base case and the recursive case Each call to the method sets up a new execution environment, with new parameters and new local variables As always, when the method execution completes, control returns to the method that invoked it (which may be an earlier invocation of itself)

Recursive Programming Consider the problem of computing the sum of all the numbers between 1 and any positive integer N, inclusive This problem can be expressed recursively as: i = 1 N N-1 N-2 = N + = N + (N-1) + = etc. i i i

Recursive Programming public int sum (int num) { int result; if (num == 1) result = 1; else result = num + sum (num - 1); return result; } One branch represent the Base case If-else statement The other branch represent the Recursive part

Recursive Programming main sum sum(3) sum(1) sum(2) result = 1 result = 3 result = 6

Recursion vs. Iteration Just because we can use recursion to solve a problem, doesn't mean we should For instance, we usually would not use recursion to solve the sum of 1 to N problem, because the iterative version is easier to understand; in fact, there is a formula which is superior to both recursion and iteration! You must be able to determine when recursion is the correct technique to use

Recursion vs. Iteration Every recursive solution has a corresponding iterative solution For example, the sum (or the product) of the numbers between 1 and any positive integer N can be calculated with a for loop Recursion has the overhead of multiple method invocations Nevertheless, recursive solutions often are more simple and elegant than iterative solutions

Recursion vs. Iteration Programming public int sum (int num) { int result = 0; for (int number = 1; number <= num; number ++) result += number return result; }

Indirect Recursion A method invoking itself is considered to be direct recursion A method could invoke another method, which invokes another, etc., until eventually the original method is invoked again For example, method m1 could invoke m2, which invokes m3, which in turn invokes m1 again until a base case is reached This is called indirect recursion, and requires all the same care as direct recursion It is often more difficult to trace and debug

Indirect Recursion m1 m2 m3

Towers of Hanoi The Towers of Hanoi is a puzzle made up of three vertical pegs and several disks that slide on the pegs The disks are of varying size, initially placed on one peg with the largest disk on the bottom with increasingly smaller disks on top The goal is to move all of the disks from one peg to another according to the following rules: We can move only one disk at a time We cannot place a larger disk on top of a smaller disk All disks must be on some peg except for the disk in transit between pegs

Towers of Hanoi

Towers of Hanoi To move a stack of N disks from the original peg to the destination peg move the topmost N - 1 disks from the original peg to the extra peg move the largest disk from the original peg to the destination peg move the N-1 disks from the extra peg to the destination peg The base case occurs when a “stack” consists of only one disk This recursive solution is simple and elegant even though the number of move increases exponentially as the number of disks increases The iterative solution to the Towers of Hanoi is much more complex

Towers of Hanoi See SolveTowers.java (page xxx) See TowersOfHanoi.java (page xxx)

Summary Chapter 11 has focused on: thinking in a recursive manner programming in a recursive manner the correct use of recursion examples using recursion

Thank You! Ευχαριστώ Dankie WAD MAHAD SAN TAHAY GADDA GUEY