LFR first PFM calibration results

Slides:



Advertisements
Similar presentations
Gravitational Wave Astronomy Dr. Giles Hammond Institute for Gravitational Research SUPA, University of Glasgow Universität Jena, August 2010.
Advertisements

Copyright 2001, Agrawal & BushnellVLSI Test: Lecture 181 Lecture 18 DSP-Based Analog Circuit Testing  Definitions  Unit Test Period (UTP)  Correlation.
STAFF Report. 1.Status of data delivery 2.Delivery Plan 3.Status of data pipeline 4.STAFF/FGM cross calibration 5.Conclusions 2 15th Cross-Calibration.
International Training Course, Potsdam ORFEUS Workshop, Vienna IRIS Metadata Workshop, Cairo 2009 IRIS Metadata Workshop, Foz do Iguacu 2010 E. Wielandt:
1 Alan Rux Electrical and Computer Engineering Department University of Massachusetts Lowell Campus Analog Discovery Design Kit Analog Discovery Design.
EE311: Junior EE Lab Phase Locked Loop J. Carroll 9/3/02.
SeaSonde Overview.
Physical-layer Identification of RFID Devices Authors: Boris Danev, Thomas S. Heyde-Benjamin, and Srdjan Capkun Presented by Zhitao Yang 1.
Calibration of TAMA300 in Time Domain Souichi TELADA, Daisuke TATSUMI, Tomomi AKUTSU, Masaki ANDO, Nobuyuki KANDA and the TAMA collaboration.
Octiv RF Power monitoring technology “. Talk Outline Impedans VI technology Introduction to power monitoring Need for VI Probes Why IV sensors are needed.
Telecom 1 9/17/2012 SPP/FIELDS Solar Probe Plus FIELDS Monthly Management Telecom Sep 17, 2012.
Self-Calibrating Audio Signal Equalization Greg Burns Wade Lindsey Kevin McLanahan Jack Samet.
Ni.com Data Analysis: Time and Frequency Domain. ni.com Typical Data Acquisition System.
Stuart D. BaleFIELDS iCDR – Science Requirements Solar Probe Plus FIELDS Instrument CDR Science and Instrument Overview Science Requirements Stuart D.
ECE 1100: Introduction to Electrical and Computer Engineering Sinusoidal Signals Waves t v(t)v(t) Wanda Wosik Associate Professor, ECE Dept. Spring 2011.
DOLPHIN INTEGRATION TAMES-2 workshop 23/05/2004 Corsica1 Behavioural Error Injection, Spectral Analysis and Error Detection for a 4 th order Single-loop.
1 AC Electricity. Time variation of a DC voltage or current 2 I V Current Voltage time t.
Lecture 18 DSP-Based Analog Circuit Testing
The French Aerospace Lab HYCAM : A Radar Cross Section Measurement and Analysis System for Time-Varying Targets Yoann Paichard.
THEMIS-SCM THM – SCM – CDR – 08-April-2004 in Velizy
Namaste Project 3.4 GHz Interference Study Preliminary document - Work in Progress updated The intent of this study is to collect data which may.
Analyzing Ionospheric Effects on WWV Timing Signals Shad Nygren Datron World Communications February 7 th 2008.
ESA EJSM/JGO Radio & Plasma Wave Instrument (RPWI) Warsaw meeting Lennart Åhlén.
Stuart D. BaleFIELDS iPDR – Science Requirements Solar Probe Plus FIELDS Instrument PDR Science and Instrument Overview Science Requirements Stuart D.
GoetzFIELDS Quarterly – 18 July 2013 SPP/FIELDS Modes and Operations Stuart D. Bale, Keith Goetz 18 July
Graz, June 2007 The DEMETER mission: Objectives and first results M. Parrot LPCE/CNRS 3A, Avenue de la Recherche Orléans cedex 2, France
11 14th CAA Cross-Calibration meeting, York, 5-7 Oct 2011 STAFF CAA products & Cross-Calibration activities Patrick ROBERT & STAFF Team 5) STAFF-SC CWF.
1 10th CAA Cross-Calibration meeting, Paris, 2-4 November 2009 STAFF/SC cross-calibration activities Patrick ROBERT, C. Burlaud & STAFF Team 2) The Calibrated.
The Analysis of Binary Inspiral Signals in LIGO Data Jun-Qi Guo Sept.25, 2007 Department of Physics and Astronomy The University of Mississippi LIGO Scientific.
Adaphed from Rappaport’s Chapter 5
LPC-analysis-VOSIM-resynthesis Combined class December 18 th 2012 Johan & Peter Institute of Sonology Royal Conservatory, The Hague.
1 Chelmsford Amateur Radio Society Intermediate Licence Course Murray Niman G6JYB Slide Set 17: v1.0, 25-May-2009 (3) Technical Basics -2: AC & Impedance.
University of Kansas 2004 ITTC Summer Lecture Series Network Analyzer Operation John Paden.
Solar Probe Plus FIELDS RFS Peter R. Harvey Oct 25, 2013.
STAFF Report Patrick Robert, Rodrigue Piberne & STAFF team.
SWGTemplate- 1 UCB, Nov 15/16, 2006 THEMIS SCIENCE WORKING TEAM MEETING Search Coil Magnetometer (SCM) team Co-i: A. Roux, O. Le Contel Technical Manager(*):
Dec 1, FIELDS Top Level Requirements Review S. Harris (UCB)
Philippe Picard 2 nd SKADS Workshop October 2007 Station Processing Philippe Picard Observatoire de Paris Meudon, 11th October 2007.
1 14th CAA Cross-Calibration meeting, York, 5-7 Oct 2011 STAFF CAA products & Cross-Calibration activities Patrick ROBERT & STAFF Team 5) STAFF-SC CWF.
Gustavo Cancelo Analysis of the phase shift error between A and B signals in BPMs BPM project.
Stuart D. BaleFIELDS SOC CDR – Science Requirements Solar Probe Plus FIELDS SOC CDR Science and Instrument Overview Science Requirements Stuart D. Bale.
Solar Probe Plus FIELDS RFS Peter R. Harvey. RFS FSW Requirements.
Performance of Digital Communications System
FIELDS iPDR – RFS Analog Dennis N. Seitz 1 Solar Probe Plus FIELDS Instrument PDR Radio Frequency Spectrometer Analog Dennis N. Seitz UC Berkeley SSL
Aug 7, 2012 SPP/FIELDS 1 UCB Digital Receiver to replace LESIA TNR/HFR.
Double Star Active Archive - DWP/STAFF 1 Double Star Active Archive STAFF/DWP Keith Yearby and Hugo Alleyne University of Sheffield Nicole Cornilleau-Wehrlin.
WHISPER Measurement of DC Magnetic field amplitude Cross Calibration Workshop 2-3 February 2006 AUTHORS: SURAUD Xavier, DECREAU Pierrette, MAZOUZ Farida,
THEMIS-SCM SCM – OVERALL RESSOURCES – STATUS versus REQUIREMENTS ItemSpecificationStatus Sensor Bandwith Sensor Sensitivity Up to 4 kHz 1 pT/√Hz at 10.
CI Lecture Series Summer 2010 An Overview of IQ Modulation and Demodulation Techniques for Cavity LLRF Control.
Crashcourse Oscilloscope and Logic Analyzer By Christoph Zimmermann.
Lesson 14: Introduction to AC and Sinusoids
Solar Probe Plus – FIELDS Main Electronics Package
Davin Larson, Roberto Livi, Phyllis Whittlesey,
High frequency Sine wave inverter
National Mathematics Day
SPP FIELDS Preamplifier
Spread Spectrum Audio Visualizer
SP+ DFB REE 12/01/12.
Solar Probe Plus FIELDS Instrument PSR - MEP Introduction
Operational Description
LFR Calibration Activities
Solar Orbiter RPW - Low Frequency Receiver
Title International Training Course, Rabat 2012 E. Wielandt:
Synopsis “The Matrix”: polarisation and pulsar timing
Correlator – Backend System Overview
Calibration of TAMA300 in Time Domain
Stochastic background search using LIGO Livingston and ALLEGRO
W. Kurth & D. Kirchner The University of Iowa 11 Jan. 2011
Electronic Noise Noise phenomena Device noise models
EEG Probe Project Grant G. Connell.
Presentation transcript:

LFR first PFM calibration results LFR sweep F0 F1 F2 SWF (9 config, 2 imp.) LFR LF sweep F1 F2 F3 CWF (3 config, 2 imp.) LFR background SWF, CWF, ASM (13 config, 3 imp.) LFR internal cal + 5 thermal steps ... Thomas Chust and the LFR team

LFR 11 analogue inputs

LFR Decimation and Processing Strategy :256 :6 (20 bits ?) 8 ADCs @ 98 304 Hz decimation down to ß 24 576 Hz ( F0 ) (14 bits ideally) :16 :6 (18 bits ?) (15 bits) 24 576 Hz 4 096 Hz 256 Hz 16 Hz shaping :6 (16 bits) :4 ( F1 ) ( F2 ) ( F3 ) ( F0 ) 2  E 3  B 1  V 2  E 3  B 2  E 3  B 1  V 2  E 3  B 2  E 3  B 1  V 2  E 3  B 1  V 2  E (3  B) FFT FFT FFT (15 bits) Spectral matrices (ASM) Waveforms (WF) Spectral matrices (ASM) Waveforms (WF) Spectral matrices (ASM) Waveforms (WF) Waveforms (WF) Basic parameters (BP) Basic parameters (BP) Basic parameters (BP)

BIAS 5 analog inputs and the R-parameters DC V (G=1/15) DC dV ~ E (G=1) AC dV ~ E (G=5 or 100, cutoff~8Hz) R2

BIAS CALIBRATION M+50_P+20_S-50_H+20 sweep @F0, F1, F2 (SWF)

M+50_P+20_S-50_H+20 PFM_CAL_LFR_SWEEP_CONF1_F0_F1_F2_1M_2016-11-23 (SE : V1_DC, V2_DC, V3_DC ; Gain = 1/17) [ BIAS_1, BIAS_2, BIAS_3 ]

M+50_P+20_S-50_H+20 PFM_CAL_LFR_SWEEP_CONF1_F0_F1_F2_1M_2016-11-23 (SE : V1_DC, V2_DC, V3_DC ; Gain = 1/17) [ BIAS_1, BIAS_2, BIAS_3 ]

M+50_P+20_S-50_H+20 PFM_CAL_LFR_SWEEP_CONF1_F0_F1_F2_1M_2016-11-23 (SE : V1_DC, V2_DC, V3_DC ; Gain = 1/17) [ BIAS_1, BIAS_2, BIAS_3 ]

M+50_P+20_S-50_H+20 PFM_CAL_LFR_SWEEP_CONF1_F0_F1_F2_1M_2016-11-23 (SE : V1_DC, V2_DC, V3_DC ; Gain = 1/17) [ BIAS_1, BIAS_2, BIAS_3 ]

M+50_P+20_S-50_H+20 PFM_CAL_LFR_SWEEP_CONF1_F0_F1_F2_100K_2016-11-23 (SE : V1_DC, V2_DC, V3_DC ; Gain = 1/17) [ BIAS_1, BIAS_2, BIAS_3 ]

PFM_CAL_LFR_SWEEP_CONF3_F0_F1_F2_1M_2016-11-22 (DIFF : V13_DC, V23_DC ; Gain = 1) [BIAS_2, BIAS_3 ]

M+50_P+20_S-50_H+20 PFM_CAL_LFR_SWEEP_CONF3_F0_F1_F2_1M_2016-11-22 (DIFF : V13_DC, V23_DC ; Gain = 1) [BIAS_2, BIAS_3 ]

M+50_P+20_S-50_H+20 PFM_CAL_LFR_SWEEP_CONF3_F0_F1_F2_1M_2016-11-22 (DIFF : V13_DC, V23_DC ; Gain = 1) [BIAS_2, BIAS_3 ]

M+50_P+20_S-50_H+20 PFM_CAL_LFR_SWEEP_CONF3_F0_F1_F2_1M_2016-11-22 (DIFF : V13_DC, V23_DC ; Gain = 1) [BIAS_2, BIAS_3 ]

PFM_CAL_LFR_SWEEP_CONF5_F0_F1_F2_1M (DIFF : V13_AC, V23_AC ; Gain = 5) [BIAS_4, BIAS_5 ]

M+50_P+20_S-50_H+20 PFM_CAL_LFR_SWEEP_CONF5_F0_F1_F2_1M (DIFF : V13_AC, V23_AC ; Gain = 5) [BIAS_4, BIAS_5 ]

M+50_P+20_S-50_H+20 PFM_CAL_LFR_SWEEP_CONF5_F0_F1_F2_1M (DIFF : V13_AC, V23_AC ; Gain = 5) [BIAS_4, BIAS_5 ]

M+50_P+20_S-50_H+20 PFM_CAL_LFR_SWEEP_CONF5_F0_F1_F2_1M (DIFF : V13_AC, V23_AC ; Gain = 5) [BIAS_4, BIAS_5 ] PFM_CAL_LFR_SWEEP_CONF5_F0_F1_F2_1M (DIFF : V13_AC, V23_AC ; Gain = 5) [BIAS_4, BIAS_5 ]

PFM_CAL_LFR_SWEEP_CONF6_F0_F1_F2_1M_2016-11-23 (DIFF : V12_AC, V23_AC ; Gain = 100) [BIAS_4, BIAS_5 ]

M+50_P+20_S-50_H+20 PFM_CAL_LFR_SWEEP_CONF6_F0_F1_F2_1M_2016-11-23 (DIFF : V12_AC, V23_AC ; Gain = 100) [BIAS_4, BIAS_5 ]

M+50_P+20_S-50_H+20 PFM_CAL_LFR_SWEEP_CONF6_F0_F1_F2_1M_2016-11-23 (DIFF : V12_AC, V23_AC ; Gain = 100) [BIAS_4, BIAS_5 ]

M+50_P+20_S-50_H+20 PFM_CAL_LFR_SWEEP_CONF6_F0_F1_F2_1M_2016-11-23 (DIFF : V12_AC, V23_AC ; Gain = 100) [BIAS_4, BIAS_5 ]

PFM_CAL_LFR_SWEEP_CONF6_F0_F1_F2_100K_2016-11-23 (DIFF : V12_AC, V23_AC ; Gain = 100) [BIAS_4, BIAS_5 ]

SCM CALIBRATION M+20_P+50_S-50_H+20 sweep @F0, F1, F2 (SWF)

M+20_P+50_S-50_H+20 PFM_CAL_LFR_SWEEP_CONF5_F0_F1_F2_1M_2016-11-26

M+20_P+50_S-50_H+20 PFM_CAL_LFR_SWEEP_CONF5_F0_F1_F2_1M_2016-11-26

M+20_P+50_S-50_H+20 PFM_CAL_LFR_SWEEP_CONF5_F0_F1_F2_1M_2016-11-26

PFM_CAL_LFR_SWEEP_CONF5_F0_F1_F2_1M_2016-11-26

TEMPERATURE EFFECTS ? M+50_P+20_S-50_H+20 M+20_P+50_S-50_H+20 sweep @F0, F1, F2 (SWF)

PFM_CAL_LFR_SWEEP_CONF5_F0_F1_F2_1M (DIFF : V13_AC, V23_AC ; Gain = 5) [BIAS_4, BIAS_5 ]

PFM_CAL_LFR_SWEEP_CONF5_F0_F1_F2_1M (DIFF : V13_AC, V23_AC ; Gain = 5) [BIAS_4, BIAS_5 ]

PFM_CAL_LFR_SWEEP_CONF2_F0_F1_F2_1M_2016-11-15

PFM_CAL_LFR_SWEEP_CONF3_F0_F1_F2_1M_2016-11-25

PFM_CAL_LFR_SWEEP_CONF2_F0_F1_F2_1M_2016-11-15

Preliminary PFM calibration conclusion BIAS TF : ~OK on the amplitudes (could be improved for f > 1 kHz ?) SCM TF: not OK on the amplitudes (up to ~35% discrepancy at ~1 kHz) Analyses done with F0, F1, F2 sweep (still not with LF F3) Still no analysis done with the phases Still no analysis done on background levels Temperature effects on LFR appears negligible ( LFR-SCM : ≤ ~1% variation from -20°C to +50°C LFR-BIAS : < 1% variation from +20°C to +50°C )

Additional slides

RPW Instrument Overview Will allow the characterization of the electric and magnetic fields associated to the dynamics of the near-Sun heliosphere from near DC up to 20 MHz Main Electronic Box (MEB) Electric Antennas (ANT) 3xV V LF Bias Unit V Sp W 1 1HF Floating volt age dr iver V 5xV BIAS 2HF V 3HF 3xV HF TNR-HFR V Auto & cr oss-spectr a Sp W 1LF 1xB (4kHz-20MHz) V HF 2LF V V V 2 3LF 3 3xV Nom. SpW HF TDS to/from S/C 1xB HF Wavefor m @ 500kS/s Sp W 3xV BIAS + LFR Redundancy RPW-DPU Search Coil Magnetometer 3xB LF (SCM) Red. SpW to/from S/C B 1LF 5xV LFR BIAS Waveform up to 25kS/s 3xV Sp W B HF 2LF + Auto & cross- spectr a 3xB LF + k- vector (~DC-10kHz) B 3LF 3.3V 2. 5V 5V +/ -1 2V B 3HF 28 V LVPS-PDU from S/C Low Frequency Receiver

Current set of Basic Parameters “Instantaneous” 5 x 5 spectral matrix (256 FFT points) Time Averaged Spectral Matrix (ASM) 𝐀𝐒𝐌 ω 𝑗 𝑚 = 1 𝑁 𝑆𝑀 𝑚 𝑘=1 𝑁 𝑆𝑀 𝑚 𝐒𝐌 𝑘 ω 𝑗 𝑚 = 𝐒𝐌 𝑡𝑖𝑚𝑒 𝐒𝐌 ω 𝑗 𝑚 = 𝐵 1 𝐵 1 ∗ 𝐵 1 𝐵 2 ∗ 𝐵 1 𝐵 3 ∗ 𝐵 1 𝐸 1 ∗ 𝐵 1 𝐸 2 ∗ 𝑐𝑐 𝐵 2 𝐵 2 ∗ 𝐵 2 𝐵 3 ∗ 𝐵 2 𝐸 1 ∗ 𝐵 2 𝐸 2 ∗ 𝑐𝑐 𝑐𝑐 𝐵 3 𝐵 3 ∗ 𝐵 3 𝐸 1 ∗ 𝐵 3 𝐸 2 ∗ 𝑐𝑐 𝑐𝑐 𝑐𝑐 𝐸 1 𝐸 1 ∗ 𝐸 1 𝐸 2 ∗ 𝑐𝑐 𝑐𝑐 𝑐𝑐 𝑐𝑐 𝐸 2 𝐸 2 ∗ Frequency average ... 𝐒 ω 𝑗 𝑚 = 𝐀𝐒𝐌 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 ... before computations of the BPs (i.e. wave parameters) BP1 set 1: Power spectrum of the magnetic field (B) BP1 set 2: Power spectrum of the electric field (E) BP1 set 3: Wave normal vector (from B) BP1 set 4: Wave ellipticity estimator (from B) BP1 set 5: Wave planarity estimator (from B) BP1 set 6: XSO(radial)-component of the Poynting vector BP1 set 7: Phase velocity estimator BP2 set 1: Autocorrelations BP2 set 2: Normalized cross correlations Mono-k assumption : (Means, JGR, 1972) (Samson & Olson, GJRA, 1980) 𝐧×𝐄 = ω 𝑘 𝐁 𝑆 𝑖𝑗 𝑆 𝑖𝑖 𝑆 𝑗𝑗

LFR Spectral Frequencies Depending on the frequency channel, selection of 96, 104 or 88 consecutive frequency bins among 128 (NFFT = 256) of the time averaged spectral matrices. Then, the ASMs are averaged over packets of Nfreq (8 or 4) consecutive bins : Δ 𝑓 𝑚 = 𝑓 𝑚 𝑁 𝐹𝐹𝑇 × 𝑁 𝑓𝑟𝑒𝑞 𝑁 𝑓𝑟𝑒𝑞 = 8 f3 = 16 Hz => waveform [DC, 8Hz] f3 / 2.5 = 6.4 Hz f2 = 256 Hz => 12 frequencies [6.5Hz, 102.5Hz] Δ f (2) = 8 Hz f2 / 2.5 = 102.4 Hz f1 = 4096 Hz => 13 frequencies [88Hz, 1752Hz] Δ f (1) = 128 Hz f1 / 2.5 = 1638.4 Hz f0 = 24576 Hz => 11 frequencies [1584Hz, 10032Hz] Δ f (0) = 768 Hz f0 / 2.5 = 9830.4 Hz 10-1 100 101 102 103 104 Hz 6.4Hz continuous waveform 6.5Hz 102.5Hz 96 bins 88Hz 1752Hz 104 bins 1584Hz 10032Hz 𝐒= 𝐀𝐒𝐌 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 88 bins

LFR Normal Mode (1) Basic Parameters sampling frequency ... BP: 1080 bps WF: 2734 bps ASM: 32 bps TM: 3846 bps Basic Parameters sampling frequency BP1 & BP2 BP1 & BP2 BP1 BP1 BP1 ASM BP1 4 SMs 64 SMs 384 SMs 4 SMs 64 SMs 384 SMs 4 SMs 64 SMs 384 SMs 4 SMs 64 SMs 384 SMs 4 SMs 64 SMs 384 SMs 4 SMs 64 SMs 384 SMs 4 SMs 64 SMs 384 SMs f0 = 24576 Hz ... TBP1_0= 4 s ... f1 = 4096 Hz ... TBP1_1= 4 s ... f2 = 256 Hz ... TBP1_2= 4 s ... ... 4 s continuous WF ... f3 = 16 Hz 20 s time

WaveForms & Averaged Spectral Matrices LFR Normal Mode (2) WaveForms & Averaged Spectral Matrices TASM= 3600 s sampling frequency TWF= 300 s WF BP1 ASM BP1 WF 384 SMs 384 SMs 384 SMs f0 = 24576 Hz 1/12 s ... ... ... 64 SMs 64 SMs 64 SMs f1 = 4096 Hz 1/2 s ... ... ... 4 SMs 4 SMs 4 SMs f2 = 256 Hz 8 s ... ... ... 2048 pts ... 4 s ... continuous WF ... f3 = 16 Hz time

LFR Selected Burst Mode 1 BP: 12672 bps WF: 393216 bps ASM: 0 bps TM: 405888 bps sampling frequency BP1 & BP2 BP1 & BP2 BP1 BP1 BP1 BP1 BP1 24 SMs 24 SMs 24 SMs 24 SMs 24 SMs 24 SMs 24 SMs f0 = 24576 Hz ... TBP1_0= 0,25 s ... 0,25 s f1 = 4096 Hz ... continuous WF ... 1 s time

LFR Selected Burst Mode 2 BP: 5760 bps WF: 24576 bps ASM: 0 bps TM: 30336 bps sampling frequency BP1 & BP2 BP1 & BP2 BP1 BP1 BP1 BP1 BP1 96 SMs 96 SMs 96 SMs 96 SMs 96 SMs 96 SMs 96 SMs f0 = 24576 Hz ... TBP1_0= 1 s ... 16 SMs 16 SMs 16 SMs 16 SMs 16 SMs 16 SMs 16 SMs f1 = 4096 Hz ... TBP1_1= 1 s ... f2 = 256 Hz ... 1 s continuous WF ... 5 s time

LFR block diagram

BIAS configuration

LFR B1 B2 B3 Transfer Fonctions

LFR BIAS Transfer Fonctions