CLIC magnets precise positioning

Slides:



Advertisements
Similar presentations
FINAL FOCUS: COMBINATION OF PRE ISOLATOR AND ACTIVE STABILISATION K. Artoos, C. Collette, R. Leuxe, C.Eymin, P. Fernandez, S. Janssens * The research leading.
Advertisements

LIGO - G R 1 HAM SAS Test Plan at LASTI David Ottaway November 2005 LIGO-G Z.
Development of a mover having one nanometer precision and 4mm moving range Y. Morita, S. Yamashita ICEPP, University of Tokyo Y. Higashi, M. Masuzawa,
A. Bay Beijing October Accelerators We want to study submicroscopic structure of particles. Spatial resolution of a probe ~de Broglie wavelength.
STABILIZATION FOR LHC INNER TRIPLETS S. Janssens, K. Artoos, M. Guinchard NOT for Distribution.
STABILIZATION STATUS AND PLANS The research leading to these results has received funding from the European Commission under the FP7 Research Infrastructures.
CERN VIBRATION SENSOR PROPOSAL The research leading to these results has received funding from the European Commission under the FP7 Research Infrastructures.
Introduction to seismic sensors (subject 3.2) Peter Novotny PACMAN meeting, CERN, 7 October 2014.
Techniques to approach the requirements of CLIC stability K. Artoos, O. Capatina (speaker), M. Guinchard, C. Hauviller, F. Lackner, H. Schmickler, D. Schulte.
Prototype Test of Vibration Isolation System Current Status & Schedule
Friedrich Lackner (TS-SU) CLIC08 Workshop. CLIC Main Beam Quadrupole Magnet The Alignment Concept Expected Properties of a the Support Structure Foreseen.
CLIC main detector solenoid and anti-solenoid impact B. Dalena, A. Bartalesi, R. Appleby, H. Gerwig, D. Swoboda, M. Modena, D. Schulte, R. Tomás.
CERN, BE-ABP (Accelerators and Beam Physics group) Jürgen Pfingstner Orbit feedback design for the CLIC ML and BDS Orbit feedback design for the CLIC ML.
QD0 stabilization L. Brunetti 1, N. Allemandou 1, J.-P. Baud 1, G. Balik 1, G. Deleglise 1, A. Jeremie 1, S. Vilalte 1 B. Caron 2, C. Hernandez 2, (LAViSta.
LINAC STABILISATION (INCLUDING FF) MECHANICAL STABILISATION AND NANO POSITIONING WITH ANGSTROM RESOLUTION The research leading to these results has received.
1 Nanopositioning of the main linac quadrupole as means of laboratory pre-alignment David Tshilumba, Kurt Artoos, Stef Janssens D. Tshilumba, CERN, 03.
Options for Final Focusing Quadrupoles Michele Modena CERN TE-MSC Many thanks for the contributions of: J. Garcia Perez, H. Gerwig, C. Lopez, C. Petrone,
CLIC MDI stabilization update A.Jeremie G.Balik, B.Bolzon, L.Brunetti, G.Deleglise A.Badel, B.Caron, R.Lebreton, J.Lottin Together with colleagues from.
STABILIZATION ACHIEVEMENTS AND PLANS FOR TDR PHASE CLIC MAIN BEAM QUADRUPOLE MECHANICAL STABILIZATION K. Artoos, C. Collette, P. Fernandez Carmona, M.
Takanori Sekiguchi External Review Control and tuning of suspension 1 T. Sekiguchi KAGRA 4th External Review.
SUSPENSIONS Pisa S.Braccini C.Bradaschia R.Cavalieri G.Cella V.Dattilo A.Di Virgilio F.Fidecaro F.Frasconi A.Gennai G.Gennaro A.Giazotto L.Holloway F.Paoletti.
R&D ON STABILIZATION MBQ: FROM CDR TO TECHNICAL IMPLEMENTATION PHASE K. Artoos, C. Collette **, P. Fernandez Carmona, M. Guinchard, C. Hauviller, S. Janssens.
MECHANICAL STABILIZATION AND POSITIONING OF CLIC (MAIN BEAM) QUADRUPOLES WITH SUB- NANOMETRE RESOLUTION K. Artoos, C. Collette **, M. Esposito, P. Fernandez.
Midterm Review 28-29/05/2015 David Tshilumba ESR3.3, WP3.
Engineering Division 1 M321/M331 Mirror Switchyard Design Review Tom Miller
CLIC08 workshop CLIC module layout and main requirements G. Riddone, on behalf of the CMWG Home page of the TBM WG:
Production and Installation Policy of IP-BPM ATF2 Project Meeting, 2006/12/18 Y. Honda, Y. Inoue, T. Hino, T. Nakamura.
Hard or Soft ? C. Collette, K. Artoos, S. Janssens, P. Fernandez-Carmona, A. Kuzmin, M. Guinchard, A. Slaathaug, C. Hauviller The research leading to these.
CLIC Workshop th -17 th October 2008 Thomas Zickler AT/MCS/MNC 1 CLIC Main Linac Quadrupoles Preliminary design of a quadrupole for the stabilization.
The VIRGO Suspensions Control System Alberto Gennai The VIRGO Collaboration.
PROGRESS ON THE CLIC MBQ STABILIZATION R&D K. Artoos, C. Collette **, M. Esposito, P. Fernandez Carmona, M. Guinchard, S. Janssens*, R. Leuxe, R. Morón.
Main beam Quad Stabilisation: Status of the stabilisation test program at CERN CLIC-stabilization day S. Janssens Contribution to slides by:
RECENT EXPERIMENTAL RESULTS ON NON- MAGNETIC VIBRATION ISOLATION Christophe Collette Credits to: David Tshilumba, Stef Janssens,
STABILISATION AND PRECISION POINTING QUADRUPOLE MAGNETS IN THE COMPACT LINEAR COLLIDER S. Janssens, P. Fernandez Carmona, K. Artoos, C. Collette, M. Guinchard.
CLIC Stabilisation Day’08 18 th March 2008 Thomas Zickler AT/MCS/MNC/tz 1 CLIC Quadrupoles Th. Zickler CERN.
Drive Beam Quadrupoles Jim Clarke, Norbert Collomb, Ben Shepherd, Graham Stokes STFC Daresbury Laboratory, UK Antonio Bartalesi, Michele Modena, and Mike.
NANO-POSITIONING POSSIBILITIES FOR FUTURE ACCELERATOR MAGNETS K. Artoos, 28 November 2014 K. Artoos, C. Collette, M. Esposito, P. Fernandez Carmona, M.
CLIC requirements on Warm Magnets (for CLIC Modules mainly) 1 M. Modena, CERN TE-MSC 13 April 2011 CERN-UK Collaboration Kick-off Meeting.
Principals of fast injection and extraction R. Apsimon.
CERN, 27-Mar EuCARD NCLinac Task /3/2009.
FP7: EuCARD after a year of preparation… A.Jeremie.
Test plan for CLIC MB linac quad LAPP option A.Jeremie.
QD0 stabilisation in CLIC CDR A.Jeremie with LAViSta team.
SPS movable table Joanna Swieszek, Kurt Artoos (EN-MME) 14/04/2016.
HF2014 Workshop, Beijing, China 9-12 October 2014 Challenges and Status of the FCC-ee lattice design Bastian Haerer Challenges.
The HiLumi LHC Design Study is included in the High Luminosity LHC project and is partly funded by the European Commission within the Framework Programme.
QD0 Stabilisation L. Brunetti 1, J. Allibe 1, J.-P. Baud 1, G. Balik 1, G. Deleglise 1, A. Jeremie 1, S. Vilalte 1 B. Caron 2, A. Badel 2, R. Le Breton.
08:30 Development of nanometer electron beam size monitor
David Tshilumba ESR3.3, WP3.
EUROTeV Diagnostics WP5
Vibration issues at Linear Colliders:
Type-A SAS Local Control Simulation (Current Status)
on behalf of the CLIC active pre-alignment team
Orbit Control For Diamond Light Source
Thermal-Structural Finite Element Analysis of CLIC module T0#2
VIRGO–KAGRA Meeting about bottom filter damping
For Discussion Possible Beam Dynamics Issues in ILC downstream of Damping Ring LCWS2015 K. Kubo.
New algorithms for tuning the CLIC beam delivery system
PACMAN meeting: 09 July 2015 David Tshilumba
Have a chance to operate your own beam at CERN
Physics design on Injector-1 RFQ
Large Booster and Collider Ring
CRAB cavities Cryomodule review Tuner
Background With new accelerators delivering beams always smaller and more energetic, requirements for very precise beam alignment become more and more.
Lecture 2 Live Feed – CERN Control Centre
LCWS 2017 – 26th October C. Rossi
By Arsalan Jamialahmadi
CLIC Undulator Option for Polarised Positrons
HAM SAS Test Plan at LASTI
Explanation of the Basic Principles and Goals
Presentation transcript:

CLIC magnets precise positioning

Compact Linear Collider (CLIC) 𝑒 − ∅ 5.6 𝑚 𝑒 + 48km Complementary to LHC Linear collider  avoid synchrotron radiation ( ∆ 𝐸 𝑏 ∝ 𝐸 𝑏 4 ( 𝑚 4 𝑅) ) Vert. Beam size 1nm at IP Hor. Beam size 40 nm at IP Challenges: Beam emittance preservation  Alignment of components  Quadrupole magnet stability D. Tshilumba, CERN, 10 November 2016

CLIC Main Beam Quadrupoles Quadrupole magnets Mass 100 – 400 kg Length 500 – 2000 mm Field gradient 200 T/m Common Basic principle: Lorentz Force 𝐹 =𝑞 𝑣 × 𝐵 Functions To Focus the beam To steer the beam : “Nano-positioning” Courtesy of J. Pfingstner D. Tshilumba, CERN, 10 November 2016

Magnets position control architecture Linac Feedback Sensor: Beam position monitor Bandwidth:  1Hz Interaction point Feedback Sensor: Beam Position Monitor Bandwidth: < 1 Hz Stabilization Sensor: Inertial sensor (Geophone) Bandwidth:1  50 Hz Stability requirement: 1.5 nm rms @ 1 Hz Nano-positioning Sensor: Linear encoder Positioning time:  20 ms Displacement steps: 10 up to 50 nm D. Tshilumba, CERN, 10 November 2016

Magnet positioning system Long range positioning stage requirements Functions : 5dofs Alignment (before beam) 2dofs Nanopositioning (beam-based alignment phase + nominal beam operation phase) 2dofs Vibration compensation (nominal beam operation phase) Stability requirements: 1.5nm rms @ 1Hz (vertical) 5nm rms @ 1 Hz (lateral) Parameters Value Resolution <0.25nm step displacement 10 up to 50nm Stroke ± 3mm Pitch angle 6rad Yaw angle Roll angle Max 100rad Speed  50μm/s Settling time t1->t2 10ms≤ts≤15ms On-axis stiffness (vertical/lateral) 400 N/μm Force capacity (positioning) 5N+20N Force capacity (stabilization) 10N Study of an integrated positioning system with high stiffness (>100N/m) capable of moving heavy loads (>50 kg) with high resolution (<1nm) over a large range (≥1mm) No actuator available on the market D. Tshilumba, CERN, 10 November 2016

Vibration Isolation Strategies Earth quake protection Big Physics projects Big Physics projects Space Daily life Big civil engineering projects D. Tshilumba, CERN, 10 November 2016

Vibration Isolation Spring mass system Basics Term Sym. Unit mass m [kg] stiffness k [N/m] Damping c [N/(m/s)] Induced force Fa [N] Ground vibrations w [m] Quadrupole vibrations x Term Physical meaning Symbol Unit Transmissibility x/w Twx [-] Compliance x/Fa TFax [m/N] Both can be referred to as transfer functions

Vibration Isolation Effect of support stiffness Soft support : Basics Effect of support stiffness [m/N] Watercooling Accoustics Ventilation Transmissibility Compliance Soft support : Improves the isolation Make the payload more sensitive to external forces Fa D. Tshilumba, CERN, 10 November 2016

Active Isolation Strategies 9 Acceleration Feedback Feedback control principle Add virtual mass D. Tshilumba, CERN, 10 November 2016

Active Isolation Strategies 10 Velocity Feedback Feedback control principle Magneto rheological fluids Sky-hook damper (D.C. Karnopp, 1969)

Active Isolation Strategies 11 Position Feedback Feedback control principle Position feedback would be great ! D. Tshilumba, CERN, 10 November 2016

Active Isolation Strategy Concept demonstration with staged test benches Collocated pair EUCARD deliverable Type 1 Seismometer FB max. gain +FF (FBFFV1mod): 7 % luminosity loss (no stabilisation 68 % loss) X-y proto

Magnet positioning system Stabilization / Nano-positioning prototype setup Piezo stack actuators Resolution: 0.15 nm Stiffness : 480 N/m Stroke: 15 µm Blocking force: 12.5 kN Optical encoder Resolution: < 1 nm Magnet mass: 80kg D. Tshilumba, CERN, 10 November 2016

Condensed type1 bench MIMO model Assembly dynamics extraction 1 4 2 3 D. Tshilumba, CERN, 10 November 2016 14

Condensed type1 bench MIMO model Assembly dynamics extraction D. Tshilumba, CERN, 10 November 2016 15

Condensed type1 bench MIMO model Coupled inputs and Outputs In(1): front left leg In(2): front right leg In(3): back left leg In(4): back right leg Out(1): front lateral encoder Out(2): front vertical encoder Out(3): back lateral encoder Out(4): back vertical encoder Interactive MIMO system 𝐺(𝑠) Controller design of 𝐶(𝑠) Improve reference tracking Decrease I/O interaction Highly coupled system Decoupling and decentralized control required 16

Condensed type1 bench MIMO model Closed loop reference tracking In(1): reference signal 1 In(2): reference signal 2 In(3): reference signal 3 In(4): reference signal 4 Out(1): front lateral encoder Out(2): front vertical encoder Out(3): back lateral encoder Out(4): back vertical encoder SVD-controller MIMO system 𝐺 𝑐𝑙 (𝑠) 𝐺 𝑐𝑙 (𝑠)= 𝐶 𝑠 𝐺(𝑠) 𝐼 𝑠 +𝐶 𝑠 𝐺(𝑠) Decoupling by Singular value decomposition -Controller design on decoupled diagonal MIMO system -Come back to original coordinates -Off- diagonal always < 1 17

Thank you for your attention! 18

Direct drive XY stages Parametric modelling CAD NEXUS CATIA V5 CAD parameters exchange and bi-directional update Input parameters: Remote magnet displacement (P2) Notch hinges thicnkess (P4) Diameter pillar (P5) Fillet radius pillar (P6) Notch hinges depth (P7) Output parameters: Equivalent Max stress (P1) First eigen frequency (P3) Vertical magnet displacement (P8) CAD NEXUS CATIA V5 ANSYS WB Powerful tool for automatized sensitivity and optimisation study D. Tshilumba, CERN, 20 April 2016

Direct drive XY stages Parametric modelling: Sensitivity study Lowest eigen frequency to P4 and P5 Larger diameter  larger frequency increase in a fixed interval of notch thickness Assymptotic limit of diameter contribution to the frequency Local maximum for a fixed diameter value

Magnet positioning system Current system overview Magnet mass: 80kg Limitations: insuficient stroke of fine stage for thermal load compensation in tunnel ( >100 µm) Limited precision of coarse stage (1 µm achievable after several iterations) ~50 days of operation using fine stage only Coarse stage (cams) locked after pre-alignment Resolution : 0.35µm Stroke: 3mm Fine stage (piezo stacks) Resolution: 0.15nm Stiffness : 480N/m Useful Stroke: 10 µm Upgrade of existing type 1 module Alternative concept for long range actuator

Magnet positioning system Nano-positioning: Inter-pulse sequence t1 t2 20 Time (ms) 1 2 3 4 Stage Beam divided into trains Calculation of new positions by global controller Positioning step of magnet check of actual displacement (machine protection) D. Tshilumba, DSPE Conference, 04 October 2016

Previous work: vibration isolation Stability requirements: Vertical: 1.5 nm (rms) at 1 Hz Horizontal: 5 nm (rms) at 1 Hz 1 d.o.f. (membrane) 2 d.o.f. (xy-guide) Type 1 Water-cooled magnet D. Tshilumba, Delft, 15 April 2015