T. Virén, M. Timonen, H. Tyrväinen, V. Tiitu, J.S. Jurvelin, J. Töyräs 

Slides:



Advertisements
Similar presentations
B. Bai, Y. Li  Osteoarthritis and Cartilage 
Advertisements

Biomechanical, biochemical and structural correlations in immature and mature rabbit articular cartilage  P. Julkunen, T. Harjula, J. Iivarinen, J. Marjanen,
H. J. Pulkkinen, V. Tiitu, P. Valonen, J. S. Jurvelin, M. J. Lammi, I
Optical imaging of mouse articular cartilage using the glycosaminoglycans binding property of fluorescent-labeled octaarginine  K. Inagawa, T. Oohashi,
The contribution of collagen fibers to the mechanical compressive properties of the temporomandibular joint disc  S. Fazaeli, S. Ghazanfari, V. Everts,
Loss of extracellular matrix from articular cartilage is mediated by the synovium and ligament after anterior cruciate ligament injury  C.M. Haslauer,
PQCT study on diffusion and equilibrium distribution of iodinated anionic contrast agent in human articular cartilage – associations to matrix composition.
Adiabatic rotating frame relaxation of MRI reveals early cartilage degeneration in a rabbit model of anterior cruciate ligament transection  J. Rautiainen,
Yevgeniya Kobrina, Lassi Rieppo, Simo Saarakkala, Jukka S
Direct delayed human adenoviral BMP-2 or BMP-6 gene therapy for bone and cartilage regeneration in a pony osteochondral model  M.I. Menendez, D.J. Clark,
A. Watanabe, C. Boesch, S.E. Anderson, W. Brehm, P. Mainil Varlet 
J. K. Sarin, H. Brommer, D. Argüelles, P. H. Puhakka, S. I. Inkinen, I
Diffusion of Gd-DTPA2− into articular cartilage
Maturation-dependent change and regional variations in acoustic stiffness of rabbit articular cartilage: an examination of the superficial collagen-rich.
Indentation diagnostics of cartilage degeneration
Application of second derivative spectroscopy for increasing molecular specificity of fourier transform infrared spectroscopic imaging of articular cartilage 
A. Williams, Y. Qian, D. Bear, C.R. Chu  Osteoarthritis and Cartilage 
Hisham A. Alhadlaq, M.S., Yang Xia, Ph.D.  Osteoarthritis and Cartilage 
T. Virén, M. Timonen, H. Tyrväinen, V. Tiitu, J.S. Jurvelin, J. Töyräs 
Osteoclasts are recruited to the subchondral bone in naturally occurring post-traumatic equine carpal osteoarthritis and may contribute to cartilage degradation 
Cartilage degeneration in the goat knee caused by treating localized cartilage defects with metal implants  R.J.H. Custers, W.J.A. Dhert, D.B.F. Saris,
Increased stromelysin-1 (MMP-3), proteoglycan degradation (3B3- and 7D4) and collagen damage in cyclically load-injured articular cartilage  Peggy M.
Cell deformation behavior in mechanically loaded rabbit articular cartilage 4 weeks after anterior cruciate ligament transection  S.M. Turunen, S.-K.
An in vivo cross-linkable hyaluronan gel with inherent anti-inflammatory properties reduces OA cartilage destruction in female mice subjected to cruciate.
H.T. Kokkonen, J.S. Jurvelin, V. Tiitu, J. Töyräs 
Determining collagen distribution in articular cartilage using contrast-enhanced micro- computed tomography  H.J. Nieminen, T. Ylitalo, S. Karhula, J.-P.
Computed tomography detects changes in contrast agent diffusion after collagen cross- linking typical to natural aging of articular cartilage  H.T. Kokkonen,
Delivery of agents into articular cartilage by laser-ultrasound
A.R. Gannon, T. Nagel, D.J. Kelly  Osteoarthritis and Cartilage 
S.M.T. Chan, C.P. Neu, G. DuRaine, K. Komvopoulos, A.H. Reddi 
Differential response of porcine osteoblasts and chondrocytes in cell or tissue culture after 5-aminolevulinic acid-based photodynamic therapy  J.D. Bastian,
Changes in spatial collagen content and collagen network architecture in porcine articular cartilage during growth and maturation  J. Rieppo, M.D., M.M.
A.S. Aula, J. Töyräs, V. Tiitu, J.S. Jurvelin 
Non-destructive electromechanical assessment (Arthro-BST) of human articular cartilage correlates with histological scores and biomechanical properties 
P. Orth, M. Cucchiarini, S. Wagenpfeil, M.D. Menger, H. Madry 
Y. Xia, Ph.D., N. Ramakrishnan, Ph.D., A. Bidthanapally, Ph.D. 
A novel exogenous concentration-gradient collagen scaffold augments full-thickness articular cartilage repair  T. Mimura, M.D., S. Imai, M.D., M. Kubo,
B. Bittersohl, F. R. Miese, H. S. Hosalkar, M. Herten, G. Antoch, R
A polarized light microscopy method for accurate and reliable grading of collagen organization in cartilage repair  A. Changoor, N. Tran-Khanh, S. Méthot,
Comparison of mechanical debridement and radiofrequency energy for chondroplasty in an in vivo equine model of partial thickness cartilage injury  R.B.
Estimation of mechanical properties of articular cartilage with MRI – dGEMRIC, T2 and T1 imaging in different species with variable stages of maturation 
P. Julkunen, J. Iivarinen, P. A. Brama, J. Arokoski, J. S. Jurvelin, H
Structural characteristics of the collagen network in human normal, degraded and repair articular cartilages observed in polarized light and scanning.
S Saarakkala, B. Sc. , M. S Laasanen, M. Sc. , J. S Jurvelin, Ph. D
Site-dependent changes in structure and function of lapine articular cartilage 4 weeks after anterior cruciate ligament transection  J.T.A. Mäkelä, Z.S.
UTE bi-component analysis of T2* relaxation in articular cartilage
L. Bian, S. L. Angione, K. W. Ng, E. G. Lima, D. Y. Williams, D. Q
M. S. Laasanen, Ph. D. , J. Töyräs, Ph. D. , A. Vasara, M. D. , S
Repair of osteochondral defects with recombinant human type II collagen gel and autologous chondrocytes in rabbit  H.J. Pulkkinen, V. Tiitu, P. Valonen,
Validation of a 40MHz B-scan ultrasound biomicroscope for the evaluation of osteoarthritis lesions in an animal model  Mathieu P. Spriet, D.V.M., Christiane.
J. Ranstam  Osteoarthritis and Cartilage 
The OARSI histopathology initiative – recommendations for histological assessments of osteoarthritis in the dog  J.L. Cook, K. Kuroki, D. Visco, J.-P.
The contribution of collagen fibers to the mechanical compressive properties of the temporomandibular joint disc  S. Fazaeli, S. Ghazanfari, V. Everts,
An experimental study on costal osteochondral graft
V. Morel, Ph.D., A. Merçay, M.Sc., T.M. Quinn, Ph.D. 
N. Männicke, M. Schöne, M. Oelze, K. Raum  Osteoarthritis and Cartilage 
Magnesium enhances adherence and cartilage formation of synovial mesenchymal stem cells through integrins  M. Shimaya, T. Muneta, S. Ichinose, K. Tsuji,
Significance of the serum CTX-II level in an osteoarthritis animal model: a 5-month longitudinal study  M.E. Duclos, O. Roualdes, R. Cararo, J.C. Rousseau,
Degeneration of patellar cartilage in patients with recurrent patellar dislocation following conservative treatment: evaluation with delayed gadolinium-enhanced.
S. Zheng, Y. Xia  Osteoarthritis and Cartilage 
Noninvasive dualMRI-based strains vary by depth and region in human osteoarthritic articular cartilage  A.J. Griebel, S.B. Trippel, C.P. Neu  Osteoarthritis.
Estimation of articular cartilage properties using multivariate analysis of optical coherence tomography signal  P.H. Puhakka, N.C.R. te Moller, I.O.
K. Kuroki, C.R. Cook, J.L. Cook  Osteoarthritis and Cartilage 
In vitro glycation of articular cartilage alters the biomechanical response of chondrocytes in a depth-dependent manner  J.M. Fick, M.R.J. Huttu, M.J.
Scaffold degradation elevates the collagen content and dynamic compressive modulus in engineered articular cartilage  K.W. Ng, Ph.D., L.E. Kugler, B.S.,
K.P. Arkill, Ph.D., C.P. Winlove, D.Phil.  Osteoarthritis and Cartilage 
Alterations in subchondral bone plate, trabecular bone and articular cartilage properties of rabbit femoral condyles at 4 weeks after anterior cruciate.
L. Xu, I. Polur, C. Lim, J.M. Servais, J. Dobeck, Y. Li, B.R. Olsen 
Osteoarthritis year in review 2016: mechanics
Comparative study of depth-dependent characteristics of equine and human osteochondral tissue from the medial and lateral femoral condyles  J. Malda,
Presentation transcript:

Ultrasonic evaluation of acute impact injury of articular cartilage in vitro  T. Virén, M. Timonen, H. Tyrväinen, V. Tiitu, J.S. Jurvelin, J. Töyräs  Osteoarthritis and Cartilage  Volume 20, Issue 7, Pages 719-726 (July 2012) DOI: 10.1016/j.joca.2012.03.018 Copyright © 2012 Osteoarthritis Research Society International Terms and Conditions

Fig. 1 Intact osteochondral samples were imaged with ultrasound and a light microscope. Subsequently, an impact injury was created on cartilage samples with a custom made dropping tower. The weight of 500 g was dropped on the cartilage samples from heights of 2.5 cm, 5.0 cm, 10 cm and 15 cm. In order to prevent any major creep deformation of the cartilage the weight was lifted from the sample within 1 s. After the injury, samples were imaged again with ultrasound and a light microscope. Osteoarthritis and Cartilage 2012 20, 719-726DOI: (10.1016/j.joca.2012.03.018) Copyright © 2012 Osteoarthritis Research Society International Terms and Conditions

Fig. 2 The measurement geometry. An ultrasound catheter was fixed to the high-resolution drivers to enable accurate positioning of the transducer. Cartilage sample was fixed on the goniometers, enabling accurate control of the angle between the ultrasound transducer and cartilage surface. Cartilage samples were immersed in degassed PBS during the measurements. Osteoarthritis and Cartilage 2012 20, 719-726DOI: (10.1016/j.joca.2012.03.018) Copyright © 2012 Osteoarthritis Research Society International Terms and Conditions

Fig. 3 R, IRC, AIB and URI determined for intact and injured samples (mean and 95% confidence intervals, n = 8 in all groups). Ultrasound reflection decreased after mechanical injury. Furthermore, values of AIB decreased after injury in 0.25 J and 0.74 J groups. No differences were detected on the values of URI between intact and injured tissue. *P < 0.05, Wilcoxon signed rank test. Osteoarthritis and Cartilage 2012 20, 719-726DOI: (10.1016/j.joca.2012.03.018) Copyright © 2012 Osteoarthritis Research Society International Terms and Conditions

Fig. 4 Optical density profiles of Safranin O stained sections of intact and injured cartilage samples (mean and 95% confidence intervals, n = 8) as a function of relative depth from the cartilage surface (surface to subchondral bone). The profiles indicate spatial distribution of proteoglycans inside the cartilage. The proteoglycan concentration was slightly lower in the injured cartilage than in intact tissue. However, the difference between the intact and injured cartilage was statistically significant only in the superficial tissue. *P < 0.05, Wilcoxon signed rank test. Osteoarthritis and Cartilage 2012 20, 719-726DOI: (10.1016/j.joca.2012.03.018) Copyright © 2012 Osteoarthritis Research Society International Terms and Conditions

Fig. 5 Axial orientation of the collagen fibrils relative to the cartilage surface (mean and 95% confidence intervals, n = 8) as a function of the relative depth from the cartilage surface (surface to subchondral bone). The orientation of the collagen fibrils was similar in intact and injured cartilage. Osteoarthritis and Cartilage 2012 20, 719-726DOI: (10.1016/j.joca.2012.03.018) Copyright © 2012 Osteoarthritis Research Society International Terms and Conditions

Fig. 6 A representative ultrasound, light microscopic and histological images (Safranin O staining of proteoglycans and PLM image of collagen orientation) of intact and injured cartilage. The cartilage injury created by impact energy of 0.12 J was not visible to the naked eye but the injury could be detected by the slight decrease of proteoglycan content in superficial cartilage and the lower ultrasound reflection at the cartilage surface. Cartilage injured by dropping an impactor on a cartilage at the instant energies of 0.25, 0.50 and 0.74 J exhibited cracking of the cartilage surface and loss of proteoglycans at the superficial cartilage. The irregular surface of the injured sample could also be detected in the ultrasound images. Osteoarthritis and Cartilage 2012 20, 719-726DOI: (10.1016/j.joca.2012.03.018) Copyright © 2012 Osteoarthritis Research Society International Terms and Conditions