Schrodinger wave equation

Slides:



Advertisements
Similar presentations
Rae §2.1, B&J §3.1, B&M § An equation for the matter waves: the time-dependent Schrődinger equation*** Classical wave equation (in one dimension):
Advertisements

Physical Chemistry 2nd Edition
The Quantum Mechanics of Simple Systems
Postulates of Quantum Mechanics. The Fundamental Rules of Our Game Any measurement we can make with an experiment corresponds to a mathematical “operator”
Integrals over Operators
Quantum One: Lecture 5a. Normalization Conditions for Free Particle Eigenstates.
Quantum One: Lecture 3. Implications of Schrödinger's Wave Mechanics for Conservative Systems.
Wavefunction Quantum mechanics acknowledges the wave-particle duality of matter by supposing that, rather than traveling along a definite path, a particle.
Almost all detection of visible light is by the “photoelectric effect” (broadly defined.) There is always a threshold photon energy for detection, even.
Atkins’ Physical Chemistry Eighth Edition Chapter 8 Quantum Theory: Introduction and Principles Copyright © 2006 by Peter Atkins and Julio de Paula Peter.
Schrödinger We already know how to find the momentum eigenvalues of a system. How about the energy and the evolution of a system? Schrödinger Representation:
4. The Postulates of Quantum Mechanics 4A. Revisiting Representations
PH 301 Dr. Cecilia Vogel Lecture 2. Review Outline  matter waves  probability, uncertainty  wavefunction requirements  Matter Waves  duality eqns.
Section 3.2 – page 174. De Broglie  Proposed the dual nature of light; it could act as a particle or a wave.
Modern Physics lecture 3. Louis de Broglie
Lecture 7 Information in wave function. II. (c) So Hirata, Department of Chemistry, University of Illinois at Urbana-Champaign. This material has been.
Ch 9 pages ; Lecture 21 – Schrodinger’s equation.
PHYS 3313 – Section 001 Lecture #17
Physics 3 for Electrical Engineering
1 The Failures of Classical Physics Observations of the following phenomena indicate that systems can take up energy only in discrete amounts (quantization.
Lecture 2. Postulates in Quantum Mechanics Engel, Ch. 2-3 Ratner & Schatz, Ch. 2 Molecular Quantum Mechanics, Atkins & Friedman (4 th ed. 2005), Ch. 1.
Ch 9 pages Lecture 22 – Harmonic oscillator.
Lecture 2. Postulates in Quantum Mechanics
مدرس المادة الدكتور :…………………………
(1) Experimental evidence shows the particles of microscopic systems moves according to the laws of wave motion, and not according to the Newton laws of.
Topic 5: Schrödinger Equation
MODULE 1 In classical mechanics we define a STATE as “The specification of the position and velocity of all the particles present, at some time, and the.
The Quantum Theory of Atoms and Molecules The Schrödinger equation and how to use wavefunctions Dr Grant Ritchie.
Ch 4. Using Quantum Mechanics on Simple Systems
Modern Physics (II) Chapter 9: Atomic Structure
Quantum Chemistry: Our Agenda Birth of quantum mechanics (Ch. 1) Postulates in quantum mechanics (Ch. 3) Schrödinger equation (Ch. 2) Simple examples of.
Section 3.2 – page 174. De Broglie  Proposed the dual nature of light; it could act as a particle or a wave. 
Atomic Structure The theories of atomic and molecular structure depend on quantum mechanics to describe atoms and molecules in mathematical terms.
Quantum Chemistry: Our Agenda Postulates in quantum mechanics (Ch. 3) Schrödinger equation (Ch. 2) Simple examples of V(r) Particle in a box (Ch. 4-5)
LECTURE 17 THE PARTICLE IN A BOX PHYSICS 420 SPRING 2006 Dennis Papadopoulos.
Modern Physics lecture X. Louis de Broglie
Nanoelectronics Chapter 3 Quantum Mechanics of Electrons
Chapter 3 Postulates of Quantum Mechanics. Questions QM answers 1) How is the state of a system described mathematically? (In CM – via generalized coordinates.
An equation for matter waves Seem to need an equation that involves the first derivative in time, but the second derivative in space As before try solution.
Topic I: Quantum theory Chapter 7 Introduction to Quantum Theory.
1924: de Broglie suggests particles are waves Mid-1925: Werner Heisenberg introduces Matrix Mechanics In 1927 he derives uncertainty principles Late 1925:
1 HEINSENBERG’S UNCERTAINTY PRINCIPLE “It is impossible to determine both position and momentum of a particle simultaneously and accurately. The product.
The Quantum Mechanical Model Chemistry Honors. The Bohr model was inadequate.
The Quantum Theory of Atoms and Molecules
Schrodinger’s Equation for Three Dimensions
UNIT 1 Quantum Mechanics.
Quantum mechanical model of the atom
Quantum Mechanics.
CHAPTER 5 The Schrodinger Eqn.
CHAPTER 5 The Schrodinger Eqn.
CHAPTER 5 The Schrodinger Eqn.
Quantum Model of the Atom
Schrodinger Equation The equation describing the evolution of Ψ(x,t) is the Schrodinger equation Given suitable initial conditions (Ψ(x,0)) Schrodinger’s.
4. The Postulates of Quantum Mechanics 4A. Revisiting Representations
Quantum One.
The Postulates and General Principles
Quantum One.
Quantum mechanics II Winter 2011
Concept test 15.1 Suppose at time
Quantum One.
Quantum Two.
Lecture 9 The Hydrogen Atom
Ψ
The Stale of a System Is Completely Specified by lts Wave Function
Quantum Mechanics Postulate 4 Describes expansion
Concept test 14.1 Is the function graph d below a possible wavefunction for an electron in a 1-D infinite square well between
More Quantum Mechanics
Quantum Chemistry / Quantum Mechanics
PHYS 3313 – Section 001 Lecture #19
Linear Vector Space and Matrix Mechanics
Presentation transcript:

Schrodinger wave equation ► The position of a particle is distributed through space like the amplitude of a wave. ► In quantum mechanics, a wavefunction describes the motion and location of a particle. ► A wavefunction is just a mathematical function which may be large in one region, small in others and zero elsewhere.

Concepts of Wave function ► If the a wavefunction is large at a particular point (i.e., the amplitude of the wave is large), then the particle has a high probability of being found at that point. If the wavefunction is zero at a point, then the particle will not be found there. ► The more rapidly a wavefunction changes from place to place (i.e., the greater the curvature of the wave), the higher kinetic energy of the particle it describes.

Schrodinger wave equation for a 1-D system for a 3-D system where for Cartesian coordinate for spherical coordinate

System with Spherical Symmetry where

Eigenstate ► in general, the Schrodinger eqn is ► H is the Hamiltonian operator, i.e., the energy operator. ► Schrodinger eqn is an eigenvalue equation (operator)(function) = (constant) x (same function) eigenvalue eigenfunction

Operator ►(operator) (function) = (constant) x (same function) The factor is called the eigenvalue of the operator ► The function (which must be the same on each side in an eigenvalue equation) is called an eigenfunction and is different for each eigenvalue. ► An eigenvalue is a measurable property of a system, an observable. Each observable has a corresponding operator. (operator for observable) (wavefunction) = (value of observable) x (wavefunction)

Examples of Operators ► A basic postulate of quantum mechanics is the form of the operator for linear momentum. ► If we want to find the linear momentum of a particle in the x direction, we use the following eigenvalue equation. ► The eigenvalue, p, is the momentum.

Correspondence ► The kinetic energy operator is then created from the momentum operator. ► If we want to find the kinetic energy of a particle in the x direction, we use the following eigenvalue equation. the eigenvalue, E, is the kinetic energy

What is the wavefunction? ► So what’s the big deal? This should be straight forward?? ► Just carry out some operation on a wavefunction, divide the result by the same wavefunction and you get the observable you want. ► Each system has its own wavefunction (actually many wavefunctions) that need to be found before making use of an eigenvalue equation. ► The Schrodinger equation and Born’s interpretation of wavefunctions will guide us to the correct form of the wavefunction for a particular system.

Born interpretation of the wavefunction ► In the wave theory of light, the square of the amplitude of an electromagnetic wave in a particular region is interpreted as its intensity in that region. ► In quantum mechanics, the square of the wavefunction at some point is proportional to the probability of finding a particle at that point.

Interpretation probability density no negative or complex probability densities written Both large positive and large negative regions of a wavefunction correspond to a high probability of finding a particle in those regions.

Normalization constant ► A normalization constant is found which will insure that the probability of finding a particle within all allowed space is 100%.

Born interpretation of the wavefunction ► There are several restrictions on the acceptability of wavefunctions. ► The wavefunction must not be infinite anywhere. It must be finite everywhere. ► The wavefunction must be single-valued. It can have only one value at each point in space. ► The 2nd derivative of the wavefunction must be well-defined everywhere if it is to be useful in the Schrodinger wave equation.

Born interpretation of the wavefunction ► The 2nd derivative of a function can be taken only if it is continuous (no sharp steps) and if its 1st derivative is continuous. ► Wavefunctions must be continuous and have continuous 1st derivatives. ► Because of these restrictions, acceptable solutions to the Schrodinger wave equation do not result in arbitrary values for the energy of a system. ► The energy of a particle is quantized. It can have only certain energies.

Expectation value ► Let’s find the average score on a quiz. There were 5 problems on the quiz, worth 20pts each (no partial credit). The scores for 10 students are given below. 80, 80 On this particular quiz, 1/5 of the students received a score of 80. On future similar quizzes, we could say the probability of getting a score of 80 is 1/5. 60, 60, 60, 60 40, 40, 40 20 What is the average score? 54

Expectation value 80, 80 60, 60, 60, 60 40, 40, 40 20 ► We calculated the average by multiplying each score by the probability of receiving that score and then found the sum of all those products.

Heisenberg’s uncertainty principle ► It is impossible to specify simultaneously, with arbitrary precision, both the momentum and the position of a particle. ► If the momentum of a particle is specified precisely, it is impossible to predict the location of the particle. ► If the position of a particle is specified exactly, then we can say nothing about its momentum.