Tomasz Dietl Laboratory for Cryogenic and Spintronic Research,

Slides:



Advertisements
Similar presentations
Jairo Sinova (TAMU) Challenges and chemical trends in achieving a room temperature dilute magnetic semiconductor: a spintronics tango between theory and.
Advertisements

Phase separation effects in diluted magnetic semiconductors collaborators: T. Andrearczyk, P. Kossacki, J. Jaroszyński, M. Sawicki – Warsaw F. Matsukura,
Apoio: Esta apresentação pode ser obtida do site seguindo o link em “Seminários, Mini-cursos, etc.” Hole concentration.
Diluted Magnetic Semiconductors Diluted Magnetic Semoconductor (DMS) - A ferromagnetic material that can be made by doping of impurities, especially transition.
Spintronics and Magnetic Semiconductors Joaquín Fernández-Rossier, Department of Applied Physics, University of Alicante (SPAIN) Alicante, June
Phase separation in strongly correlated electron systems with Jahn-Teller ions K.I.Kugel, A.L. Rakhmanov, and A.O. Sboychakov Institute for Theoretical.
Magnetoresistance of tunnel junctions based on the ferromagnetic semiconductor GaMnAs UNITE MIXTE DE PHYSIQUE associée à l’UNIVERSITE PARIS SUD R. Mattana,
Ab initio study of the diffusion of Mn through GaN Johann von Pezold Atomistic Simulation Group Department of Materials Science University of Cambridge.
School of Physics and Astronomy, University of Nottingham, UK
Coherently photo-induced ferromagnetism in diluted magnetic semiconductors J. Fernandez-Rossier ( University of Alicante, UT ), C. Piermarocchi (MS), P.
Defects & Impurities BW, Ch. 5 & YC, Ch 4 + my notes & research papers
Optical Properties of Ga 1-x Mn x As C. C. Chang, T. S. Lee, and Y. H. Chang Department of Physics, National Taiwan University Y. T. Liu and Y. S. Huang.
2. Magnetic semiconductors: classes of materials, basic properties, central questions  Basics of semiconductor physics  Magnetic semiconductors Concentrated.
Study on the Diluted Magnetic Semiconductors QSRC, Dongguk University
57 Mn Mössbauer collaboration at ISOLDE/CERN Emission Mössbauer spectroscopy of advanced materials for opto- and nano- electronics Spokepersons: Haraldur.
National laboratory for advanced Tecnologies and nAnoSCience Material and devices for spintronics What is spintronics? Ferromagnetic semiconductors Physical.
Basic Electronics By Asst Professor : Dhruba Shankar Ray For B.Sc. Electronics Ist Year 1.
NAN ZHENG COURSE: SOLID STATE II INSTRUCTOR: ELBIO DAGOTTO SEMESTER: SPRING 2008 DEPARTMENT OF PHYSICS AND ASTRONOMY THE UNIVERSITY OF TENNESSEE KNOXVILLE.
Getting FM in semiconductors is not trivial. Recall why we have FM in metals: Band structure leads to enhanced exchange interactions between (relatively)
Ferromagnetic semiconductors for spintronics Kevin Edmonds, Kaiyou Wang, Richard Campion, Devin Giddings, Nicola Farley, Tom Foxon, Bryan Gallagher, Tomas.
Colossal Magnetoresistance of Me x Mn 1-x S (Me = Fe, Cr) Sulfides G. A. Petrakovskii et al., JETP Lett. 72, 70 (2000) Y. Morimoto et al., Nature 380,
Photo-induced ferromagnetism in bulk-Cd 0.95 Mn 0.05 Te via exciton Y. Hashimoto, H. Mino, T. Yamamuro, D. Kanbara, A T. Matsusue, B S. Takeyama Graduate.
Magnetic property of dilute magnetic semiconductors Yoshida lab. Ikemoto Satoshi K.Sato et al, Phys, Rev.B
Impurities & Defects, Continued More on Shallow Donors & Acceptors Amusing Answers to Exam Questions Given by Public School Students!
Ion Implantation and Ion Beam Analysis of Silicon Carbide Zsolt ZOLNAI MTA MFA Research Institute for Technical Physics and Materials Science Budapest,
Electronic and Magnetic Structure of Transition Metals doped GaN Seung-Cheol Lee, Kwang-Ryeol Lee, Kyu-Hwan Lee Future Technology Research Division, KIST,
1 光電子分光でプローブする 遷移金属酸化物薄膜の光照射効果 Photo-induced phenomena in transition-metal thin films probed by photoemission spectroscopy T. Mizokawa, J.-Y. Son, J. Quilty,
Low Temperature Characteristics of ZnO Photoluminescence Spectra Matthew Xia Columbia University Advisor: Dr. Karl Johnston.
FZU Comparison of Mn doped GaAs, ZnSe, and LiZnAs dilute magnetic semiconductors J.Mašek, J. Kudrnovský, F. Máca, and T. Jungwirth.
Jeroen van den Brink Bond- versus site-centred ordering and possible ferroelectricity in manganites Leiden 12/08/2005.
ELECTRON AND PHONON TRANSPORT The Hall Effect General Classification of Solids Crystal Structures Electron band Structures Phonon Dispersion and Scattering.
Daresbury Laboratory Ferromagnetism of Transition Metal doped TiN S.C. Lee 1,2, K.R. Lee 1, K.H. Lee 1, Z. Szotek 2, W. Temmerman 2 1 Future Technology.
Direct identification of interstitial Mn in Ga 1-x Mn x As and evidence of its high thermal stability Lino Pereira 1, 2, 3 U. Wahl 2, J. G. Correia 2,,
ZnCo 2 O 4 : A transparent, p-type, ferromagnetic semiconductor relevant to spintronics and wide bandgap electronics Norton Group Meeting 4/1/08 Joe Cianfrone.
Ferromagnetic semiconductor materials and spintronic transistors Tomas Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard Campion,
전이금속이 포함된 GaN의 전자구조 및 자기적 특성해석
Unbiased Numerical Studies of Realistic Hamiltonians for Diluted Magnetic Semiconductors. Adriana Moreo Dept. of Physics and ORNL University of Tennessee,
Semiconductors with Lattice Defects
Applications of Spin-Polarized Photoemission P. D. Johnson, Annual Rev. Mater. Sci. 25 (1995) Combined spin –integrated/resolved detector: Giringhelli,
First Principle Design of Diluted Magnetic Semiconductor: Cu doped GaN
SPINTRONICS AND FERROMAGNETIC SEMICONDUCTORS Tomasz Dietl, Warsaw.
Magnetic properties of (III,Mn)As diluted magnetic semiconductors
II-VI Semiconductor Materials, Devices, and Applications
Ultrafast Dynamic Study of Spin and Magnetization Reversal in (Ga,Mn)As Xinhui Zhang (张新惠) State Key Laboratory for Superlattices and Microstructures.
Emission Mössbauer spectroscopy of advanced materials for opto- and nano-electronics Spokepersons: Haraldur Páll Gunnlaugsson Sveinn Ólafsson Contact person:
Chapter Energy Bands and Charge Carriers in Semiconductors
Modern physics 10. Electrical conductivity of solids
, KITS, Beijing  Numerical study of electron correlation effects in spintronic materials Bo Gu (顾波) Advanced Science Research Center (ASRC) Japan.
Emission Channeling with Short-Lived Isotopes: lattice location of impurities in semiconductors and oxides L.M.C. Pereira1 , L. Amorim1, J.P. Araújo4,
Dilute moment ferromagnetic semicinductors for spintronics
Effect of partial Ti substitution at Zn sites on the Structural, Electronic and Magnetic Properties of Zn3P2 G. Jaiganesh and S. Mathi Jaya Materials Science.
“Semiconductor Physics”
Conductivity Charge carriers follow a random path unless an external field is applied. Then, they acquire a drift velocity that is dependent upon their.
Today’s objectives- Semiconductors and Integrated Circuits
Lecture 2 OUTLINE Important quantities
Impurities & Defects, Continued More on Shallow Donors & Acceptors
Half-Metallic Ferromagnetism in Fe-doped Zn3P2 From First-Principles Calculations G. JAI GANESH and S. MATHI JAYA Materials Science Group, Indira Gandhi.
3.1.4 Direct and Indirect Semiconductors
Hyperfine interaction studies in Manganites
S.-C. Lee*, K.-R. Lee, and K.-H. Lee Computational Science Center
Read: Chapter 2 (Section 2.3)
EECS143 Microfabrication Technology
Lecture 2 OUTLINE Semiconductor Fundamentals (cont’d)
Basic Semiconductor Physics
ECE 340 Lecture 6 Intrinsic Material, Doping, Carrier Concentrations
Defects & Impurities BW, Ch. 5 & YC, Ch 4 + my notes & research papers
Impurities & Defects, Continued More on Shallow Donors & Acceptors
EE105 Fall 2007Lecture 1, Slide 1 Lecture 1 OUTLINE Basic Semiconductor Physics – Semiconductors – Intrinsic (undoped) silicon – Doping – Carrier concentrations.
Lecture 1 OUTLINE Basic Semiconductor Physics Reading: Chapter 2.1
Presentation transcript:

Summary and prospects in the field of magnetically doped semiconductors Tomasz Dietl Laboratory for Cryogenic and Spintronic Research, Institute of Physics, Polish Academy of Sciences Institute of Theoretical Physics, University of Warsaw, Poland WPI-AIMR Tohoku University, Sendai, Japan FunDMS see, A. Bonanni and T. Dietl, Chem. Soc. Rev. 39, 528 (2010) T. Dietl and H. Ohno, Rev. Mod. Phys. 86, 187 (2014)

Summary and prospects in the field of magnetically doped semiconductors Tomasz Dietl Laboratory for Cryogenic and Spintronic Research, Institute of Physics, Polish Academy of Sciences Institute of Theoretical Physics, University of Warsaw, Poland WPI-AIMR Tohoku University, Sendai, Japan FunDMS see, A. Bonanni and T. Dietl, Chem. Soc. Rev. 39, 528 (2010) T. Dietl and H. Ohno, Rev. Mod. Phys. 86, 187 (2014) Unanticipated richness of materials science challenges Test beds for spintronic functionalities

Magnetically doped semiconductors Accomplishments

Magnetically doped semiconductors Accomplishments Prospects, challenges, emerging fields, …

Magnetically doped semiconductors Accomplishments Prospects, challenges, emerging fields, … Role of nuclear methods (other talks, discussion, ) characterization, fabrication, …

Moessbauer isotopes

Moessbauer isotopes and more …. channeling

Outline Mamagnetically doped semiconductors summary, prospects, challenges, emerging fields, …

Outline Mamagnetically doped semiconductors summary, prospects, challenges, emerging fields, … dopants semiconductors magnetic interactions magnetic ground states functionalities

Outline Mamagnetically doped semiconductors summary, prospects, challenges, emerging fields, … dopants semiconductors magnetic interactions magnetic ground states functionalities The case study – magnetically-doped nitrides  Alberta Bonanni

Dilute magnetic semiconductors (DMSs) III-V II-VI Al P Cr Zn S Cr Ga As Mn Cd Se Mn In Sb Fe Hg Te Fe Galazka ‘77

Magnetic elements

Magnetic dopants Transition metals: open 3d shell but also 4d e.g. Ru Rare earth: 4f but also actinides: 5f, e.g. U Magnetically active defects and impurities d0 ferromagnetism p ferromagnetism Contamination

Magnetic dopants Transition metals: open 3d shell but also 4d e.g. Ru Rare earth: 4f but also actinides: 5f, e.g. U Magnetically active defects and impurities d0 ferromagnetism p ferromagnetism Contamination doping methods: also ion implantation, isotope transmutation, …

Single impurity limit

TM, RE doping – single impurity limit Questions answers depend on growth method/co-doping incorporation into the lattice – not always cation substitution energy levels electrical activity charge and spin state Jahn-Teller distortion hybridization with band states defect generation formation of complexes with defects/impurities …. T.D. (SST’2002)

Interstitial position e.g. part of Mn in MBE-(Ga,Mn)As) Mn interstitials: -- donors  compensate holes -- form AF pairs with MnGa  compensate spins K. M. Yu et al. (Berkeley, Notre-Dame, PRB’2012)

Antisite position e.g. part of Mn in Mn-implanted (Ga,Mn)N - channeling L.M.C. Pereira et al. (Leuven, Lisboa) PRB'12

Complexes e.g. Mn-Mgk complexes in (Ga,Mn)N:Mg T. Devillers et al. (Linz, Warsaw), Sci. Reports 2012

Contamination e.g. etched Si 300 K 300 K P. J. Grace et al. (TCD, Weizmann) Adv. Mat.’09

Contamination e.g. etched Si 300 K 300 K P. J. Grace et al. (TCD, Weizmann) Adv. Mat.’09

Contamination e.g. etched Si  Fe from glass 300 K 300 K P. J. Grace et al. (TCD, Weizmann) Adv. Mat.’09  Fe from glass Fe-containing nanoparticles main source of ferro contamination

Many impurities - DMS

Distribution of magnetic dopants Key insight d orbitals contribute to bonding  attractive force between TM cations (chemical interactions)  non-random distribution of TM ions at thermal equilibrium Exceptions (true DMSs) -- (II,Mn)VI -- growth far from thermal equilibrium, e.g., LT-MBE of (Ga,Mn)As Types of non-random distribution -- crystallographic phase separation (precipitation) -- chemical phase separation (spinodal decomposition)  locally high density of TM  condensed magnetic semiconductors (CMS)

Nanocrystals e.g., annealed (Ga,Mn)As Hexagonal MnAs nanocrystals in GaAs Cubic (Mn,Ga)As nanocrystals in GaAs M. Moreno et al. (Berlin) JAP’02

Nanocolumns wz-(Al,Cr)N zb-(Zn,Cr)Te (Ge,Mn) TEM/EDS TEM/EELS 25nm N. Yotaro, et al. (Tsukuba, Warsaw) MRS Proc.’09 L. Gu et al. (Arizona) JMMM’06 (Ge,Mn) TEM/EELS M. Jamet et al. (Grenoble) Nature Mat. ’06 cf. D. Bougear et al.. (WSI Garching)

Controlling TM distribution TM distribution depends more on growth/processing than on TM/host combination Aggregation can be enhanced by -- high growth temperature -- slow growth rate Can be affected by changing valence of TM ions -- co-doping -- electrical/optical carrier injection during growth

Effect of doping on spinodal decomposition TM charge state is controlled by co-doping with shallow impurities. Because of Coulomb repulsion spinodal decomposition is blocked if TM is charged Cr+2 EF ZnTe Cr+3 ZnTe:N T.D., Nature Mat.’06 L.-H. Ye et al. (NWU) PRB’06

Effect of co-doping on magnetism [I] ~ 2 x 1018 cm-3 Cr2+ Te-rich growth Cr2+/Cr3+ [N] ~ 3 x1020 cm-3 Cr3+ S. Kuroda … T.D. (Tsukuba, Warsaw) Nature Mat., ’07

Effect of co-doping on Cr distribution I-doped 50nm Optimized TEM/EDS Inhomogeneous S. Kuroda ... T.D. (Tsukuba, Warsaw) Nature Mat., ’07

Effect of co-doping on Cr distribution I-doped N-doped 50nm Optimized N-doped TEM/EDS Inhomogeneous Homogeneous S. Kuroda … T.D. (Tsukuba, Warsaw) Nature Mat., ’07

Magnetic interactions between localized spins Dominant interaction in non-metals -- superexchange TM cation TM cation anion Always present: usually antiferromagnetic, e.g. Mn2+ [reduces M(T,H)] DMS – random antiferromagnets spin-glass freezing at low T

Zn1-xCoxO – inverse magnetic susceptibility grown by ALD at 160oC x = 42% M. Sawicki et al. [Warsaw] PRB’2013 antiferromagnetic superexchange

Zn1-xCoxO – spin-glass freezing M. Sawicki et al. [Warsaw] PRB’2013

Effects of TM spins on band states sp-d exchange interaction in DMSs H = - Isp-dsS -- spin disorder scattering -- formation of magnetic polarons -- giant spin splitting of bands proportional to magnetization of localized spins

Giant splitting of exciton states ~ M(T,H) E ~ M ~ BS(H) c.b. v.b. geff > 102 J. Gaj et al., R. Planel,.. A. Twardowski et al. G. Bastard, … -- p-d: Ipd  No  - 1.0 eV large p-d hybridization and large intra-site Hubbard U => kinetic p-d exchange -- s-d: Isd  No  0.2 eV no s-d hybridization => potential s-d exchange

Ferromagnetic superexchange TM cation TM cation anion usually antiferromagnetic, e.g. Mn2+ [reduces M(T,H)] sometimes ferromagnetic [enhances M(T,H)] eg. (Ga,Mn)N with Mn3+, TC up to 12 K  ferromagnetic Mott-Hubbard insulator cf. Alberta Bonanni

RKKY and Bloembergen-Rowland mechanism spin polarisation of carriers spin polarisation of valence electrons  Dominates in topological insulators 4th order process in hybridisation <k|H |d>

Zener/RKKY model of ferromagnetism Competition between entropy, AF interactions, and lowering of carrier enrgy owing to spin-splitting Curie temperature TC = TCW = TF – TAF superexchange TF = S(S+1)xeffNo(s)(EF)I2/12 (s)(EF) ~ m*kFd-2 (if no spin-orbit coupling, parabolic band) => TC ~ 50 times greater for the holes large m* large Ip-d T.D. et al. PRB’97,’01,‘02, Science ’00

Making DMS ferromagnetic – p-type doping holes mediate ferro coupling in DMS source of holes in Mn-based DMSs, x < 10%: Mn itself III-V (In,Mn)As; (Ga,Mn)As H. Ohno et al. [IBM, Tohoku] PRL’92, APL’96 (Sb,Mn)2Te3; (Bi,Mn)2Te3 Choi et al. [Ulsan] pps(b)’04 TC up to 190 K TC up to 20 K

Making DMS ferromagnetic – p-type doping valence band holes mediate ferro coupling in p-type DMS source of holes in Mn-based DMSs, x < 10%: Mn itself III-V (In,Mn)As; (Ga,Mn)As H. Ohno et al. [IBM, Tohoku] PRL’92, APL’96 (Sb,Mn)2Te3; (Bi,Mn)2Te3 Choi et al. [Ulsan] pps(b)’04 acceptor impurities (Cd,Mn)Te:N, (Zn,Mn)Te:P TD, Cibert et al. [Grenoble, Warsaw] PRB’97, PRL’97, PRL’03 (K,Ba)(Zn,Mn)2As2 et al. [Beijing, Columbia U.] Nat. Commun.’13 TC up to 190 K TC up to 20 K TC up to 5 K TC up to 180 K

Making DMS ferromagnetic – p-type doping valence band holes mediate ferro coupling in p-type DMS source of holes in Mn-based DMSs, x < 10%: Mn itself III-V (In,Mn)As; (Ga,Mn)As H. Ohno et al. [IBM, Tohoku] PRL’92, APL’96 (Sb,Mn)2Te3; (Bi,Mn)2Te3 Choi et al. [Ulsan] pps(b)’04 acceptor impurities (Cd,Mn)Te:N, (Zn,Mn)Te:P TD, Cibert et al. [Grenoble, Warsaw] PRB’97, PRL’97, PRL’03 (K,Ba)(Zn,Mn)2As2 et al. [Beijing, Columbia U.] Nat. Commun.’13 cation vacancies IV-VI, [I-II]-V (Pb,Sn,Mn)Te T. Story et al. [Warsaw] PRL’86 (Ge,Mn)Te Y. Fukuma et al. [Yamaguchi] APL’08 [Li(Zn,Mn)]As Z. Deng et al. [Beijing, Columbia,Tokyo, Vancouver] Nature Comm.’11 TC up to 190 K TC up to 20 K TC up to 5 K TC up to 50 K TC up to 10 K TC up to 180 K

TC in p-type (III,Mn)V p-d Zener model/expl. T.D. et al., Science’00 InSb: T. Jungwirth et al., PRB’02 Berkeley Prague/Nottingham/Beijing Kanagawa Tohoku Notre Dame

High TC ferromagnetic semiconductors

wz-c-(Ga,Mn)N, (Ga,Fe)N, (In,Mn)N, (Al,Mn)N, (Ga,Cr)N, (Al,Cr)N DMS, DMO, and non-magnetic materials showing spontaneous magnetization at 300 K wz-c-(Ga,Mn)N, (Ga,Fe)N, (In,Mn)N, (Al,Mn)N, (Ga,Cr)N, (Al,Cr)N (Ga,Mn)As, (In,Mn)As, (Ga,Mn)Sb, (Ga,Mn)P:C (Zn,Mn)O, (Zn,Ni)O, (Zn,Co)O, (Zn,V)O, (Zn,Fe,Cu)O, (Zn,Cu)O (Zn,Cr)Te (Ti,Co)O2, (Ti,V)O2, (Ti,Cr)O2, (Sn,Co)O2, (Sn,Fe)O2, (Hf,Co)O2 (Cd,Ge,Mn)P2, (Zn,Ge,Mn)P2, (Cd,Ge,Mn)As2, (Zn,Sn,Mn)As2 (Ge,Mn), (Ge,Cr), (Ge,Mn,Fe), (Si,Fe), (Si,Mn), (SiC,Fe) (La,Ca)B6, CaB2C2, C, C60, HfO2, ZnO, GaN:Gd, GaN:Eu... holes unnecessary TM ions unnecessary confirmed by ab initio works in many cases properties strongly dependent on the growth conditions

Functionalities

Magnetically-doped semiconductors - functionalities Localized gap states cf. Hannes Raebiger – ab initio -- carrier trapping (TM gap levels, Zhang-Rice polarons)  semi-insulating substrates GaAs:Cr, InP:Fe, GaN:Fe, …

Magnetically-doped semiconductors - functionalities Localized gap states -- carrier trapping (TM gap levels, Zhang-Rice polarons)  semi-insulating substrates GaAs:Cr, InP:Fe, GaN:Fe, … -- intra-center optical transitions  LEDs ZnSe:Mn  broad band optically pumped lasers oxides: TM, ZnSe:Cr, ... S. Mirov et al.. Laser & Photon. Rev. 4, No. 1, 21–41 (2010) Challenge: electrically pumped broadband lasers

Optical insulators of DMS absorption (+) > (-)  magnetic circular dichroism  large Faraday rotation optical isolators: J. Gaj, M. Nawrocki, R. Gałązka SSC’78 laser (Cd,Mn)Te magnet fiber F = /4 spintronic device Challenge: optical isolators of ferromagnetic semiconductors

Functionalities of ferromagnetic insulators Spin filtering tunneling barriers Spin current leads via magnons Split topological surface and edge states ….

Functionalities of hole-mediated ferromagnets Controlling magnetization direction by an electric field low-power magnetization switching Chiba et al. [Tohoku, Warsaw] Nature’08

Functionalities of hole-mediated ferromagnets Controlling magnetization direction by an electric field physics: repopulation of v.b. subbands affects holes’ L and via s.o. s low-power magnetization switching D. Chiba et al. [Tohoku, Warsaw] Nature’09

Uniaxial in-plane magnetic anisotropy – p-d Zener modeling J. Zemen et al. [Prague] PRB'09, Birowska et al. [Warsaw] PRL’12 W. Stefanowicz et al. [Warsaw, Regensburg] PRB‘10

Summary Three families of ferromagnetic DMSs -- high temperature ferro DMSs, DMOs, TC up to 900 K -- dilute ferromagnetic insulators, TC up to 15 K superexchange -- carrier-mediated ferromagnetic DMSs, TC up to 190 K p-d Zener model

Outlook Unanticipated richness of materials science challenges Test beds for spintronic functionalities

Outlook Unanticipated richness of materials science challenges Test beds for spintronic functionalities Challenge: understanding and functionalizing high TC in semiconductors aggregation of TM ions? d0 ferromagnetism? contamination? ….

Outlook Challenge: how to go to 300 K with proven functionalities Unanticipated richness of materials science challenges Test beds for spintronic functionalities Challenge: how to go to 300 K with proven functionalities

Y. Siota et al. [Osaka, Tohoku] Nature Mater.2012 Outlook Unanticipated richness of materials science challenges Test beds for spintronic functionalities Challenge: how to go to 300 K with proven functionalities increasing TM/hole concentrations [e.g. (Si,Mn)] ferrimagnetic oxide spinels, TC up to 800 K ferromagnetic metals, TC up to 1200 K condensed magnetic semiconductors -- exploiting attractive forces between TM cations antiferromagnetic spintronics  no cross-talking between bits  can be switched by electric current cf. Andrei Zenkevich Y. Siota et al. [Osaka, Tohoku] Nature Mater.2012

Magnetoresistance hysteresis n-Zn1-xMnxO:Al, x = 0.03 D 50mK 60mK 75mK 100mK 125mK 150mK 200mK TC = 160 mK Rxx () D (mT) Magnetic field (T) Temperature (K) M. Sawicki, ..., M. Kawasaki, T.D., ICPS’00

Replacing lithography by self-assembling top-down  bottom up nanocomposites assembled with atomic precision

Nanospintronics Nanoelectronics = manipulation with charges and currents at nanoscale Nanospintronics = manipulations with magnetisation and spin currents at nanoscale

Universal memory – STT MRAM scalable nonvolatile > 10 yr fast ~ ns endurable 1015 radiation hardness Will replace HD and SSD (flash)?

Low-power logic-in-memory CoFeB Ru MgO ferromagnetic MTJ semiconductor CMOS 4 MTJs + 32 MOSs Adder: power consumption reduced 4 times S. Matsunaga et al. (Tohoku) APEX’08