Electric Circuits Fall, 2014

Slides:



Advertisements
Similar presentations
Chapter 9 Capacitors.
Advertisements

DC CIRCUITS: CHAPTER 4.
Introductory Circuit Analysis Robert L. Boylestad
Lecture 4 Capacitance and Capacitors Chapter 16.6  Outline Definition of Capacitance Simple Capacitors Combinations of Capacitors Capacitors with.
Capacitors1 THE NATURE OF CAPACITANCE All passive components have three electrical properties Resistance, capacitance and inductance Capacitance is a measure.
Capacitance Al Penney VO1NO.
First Order Circuit Capacitors and inductors RC and RL circuits.
Capacitance and Dielectrics
Introductory Circuit Analysis Robert L. Boylestad
Chapter 6 Capacitors and Inductors. Capacitors A typical capacitor A capacitor consists of two conducting plates separated by an insulator (or dielectric).
Capacitors and Inductors 1 svbitec.wordpress.com Vishal Jethva.
Lesson 14 – Capacitors & Inductors. Learning Objectives Define capacitance and state its symbol and unit of measurement. Predict the capacitance of a.
Capacitors and Inductors Discussion D14.1 Section 3-2.
Chapter 6 Capacitors and Inductors
Capacitors in a Basic Circuit
Capacitors and Inductors. Introduction Resistor: a passive element which dissipates energy only Two important passive linear circuit elements: 1)Capacitor.
Lecture - 4 Inductance and capacitance equivalent circuits
Storey: Electrical & Electronic Systems © Pearson Education Limited 2004 OHT 13.1 Capacitance and Electric Fields  Introduction  Capacitors and Capacitance.
Lec. (4) Chapter (2) AC- circuits Capacitors and transient current 1.
Chapter 12.
Capacitors & Inductors. Introduction Unlike resistors, which dissipate energy, capacitors and inductors do not dissipate but store energy, which can be.
EGR 2201 Unit 8 Capacitors and Inductors  Read Alexander & Sadiku, Chapter 6.  Homework #8 and Lab #8 due next week.  Quiz next week.
ELECTRICITY & MAGNETISM
Energy Storage Devices Prepared By : Shingala Nital ( ) Paghdal Radhika ( ) Bopaliya Mamta ( ) Guided By : Prof. Tank.
Chapter 28 Direct Current Circuits 1.R connections in series and in parallel 2.Define DC (direct current), AC (alternating current) 3.Model of a battery.
Fundamentals of Electric Circuits Chapter 7
Copyright ©2011 by Pearson Education, Inc. publishing as Pearson [imprint] Introductory Circuit Analysis, 12/e Boylestad Chapter 10 Capacitors.
Fall 2001ENGR201 Capacitance & Inductance1 Capacitor, also called electrical condenser, device for storing an electrical charge. In its simplest form a.
Capacitors and Inductors Instructor: Chia-Ming Tsai Electronics Engineering National Chiao Tung University Hsinchu, Taiwan, R.O.C.
Electric Circuits Fundamentals
1 Chapter 6 Capacitors and Inductors 電路學 ( 一 ). 2 Capacitors and Inductors Chapter 6 6.1Capacitors 6.2Series and Parallel Capacitors 6.3Inductors 6.4Series.
Two conductors in proximity form a “capacitor”: they have a capacity to hold a charge Q (+Q on one and -Q on the other) with a voltage difference V. C=Q/V.
Fundamentals of Electric Circuits Chapter 6
Chapter 10 Capacitors and Capacitance. 2 Capacitance Capacitor –Stores charge –Two conductive plates separated by insulator –Insulating material called.
Basic Theory of Circuits, SJTU Chapter 6 Capacitors and Inductors.
Chapter 12 Principles of Electric Circuits, Conventional Flow, 9 th ed. Floyd © 2010 Pearson Higher Education, Upper Saddle River, NJ All Rights.
305221, Computer Electrical Circuit Analysis การวิเคราะห์วงจรไฟฟ้าทาง คอมพิวเตอร์ 3(2-3-6) ณรงค์ชัย มุ่งแฝงกลาง คมกริช มาเที่ยง สัปดาห์ที่ 9 Reactive.
Capacitors are one of the fundamental passive components. In its most basic form, it is composed of two conductive plates separated by an insulating dielectric.
111/16/2015 ELECTRICITY AND MAGNETISM Phy 220 Chapter 4: Capacitors.
CAPACITORS. A capacitor is a device used to “store” electric charge. It can store energy and release it very quickly!!
Capacitance Physics Montwood High School R. Casao.
Alexander-Sadiku Fundamentals of Electric Circuits
Capacitor Engr. Faheemullah Shaikh Lecturer, Department of Electrical Engineering.
EKT 101 Electric Circuit Theory
Capacitors and Inductors 1 Eastern Mediterranean University.
Capacitors The capacitor is an element that continuously stores charge (energy), for later use over a period of time! In its simplest form, a capacitor.
Capacitors AC Circuits I. Capacitors and Capacitance: An Overview Capacitance – the ability of a component to store energy in the form of an electrostatic.
I Chapter 25 Electric Currents and Resistance. I Problem (II) A 0.50μF and a 0.80 μF capacitor are connected in series to a 9.0-V battery. Calculate.
Chapter 9 CAPACITOR.
Capacitance. Device that stores electric charge. Construction: A capacitor is two conducting plates separated by a finite distance Typically separated.
Chapter 9 Capacitors. Objectives Describe the basic structure and characteristics of a capacitor Discuss various types of capacitors Analyze series capacitors.
FUNDAMENTALS OF ELECTRICAL ENGINEERING [ ENT 163 ] LECTURE #5a CAPACITORS AND INDUCTORS HASIMAH ALI Programme of Mechatronics, School of Mechatronics Engineering,
CAPACITORS & CAPACITANCE
Lesson 11: Capacitors (Chapter 10) and Inductors (Chapter 11)
Capacitors.
Fundamentals of Electric Circuits Chapter 7
Inductance and Capacitance
EKT 101 Electric Circuit Theory
EKT 101 Electric Circuit Theory
Practice #13—RC Circuits Mr. Burleson
Capacitors and Inductors
electronics fundamentals
Potential Difference and Capacitance
Fundamentals of Electric Circuits Chapter 6
Fundamentals of Electric Circuits Chapter 7
ELE 1001: Basic Electrical Technology Lecture 6 Capacitors
Chapter 9 Capacitors.
Electric Circuits Fall, 2017
Electric Circuits Fall, 2017
DC CIRCUITS: CHAPTER 4.
Presentation transcript:

Electric Circuits Fall, 2014 Chapter 9 Capacitance

9.1 Introduction 9.1 Introduction The next two chapters will introduce two new linear circuit elements: The capacitor. The inductor. Unlike resistors, these elements do not dissipate energy. They instead store energy. We will also look at how to analyze them in a circuit.

9.2 Capacitors 9.2 Capacitors A capacitor is a passive element that stores energy in its electric field It consists of two conducting plates separated by an insulator (or dielectric) The plates are typically aluminum foil. The dielectric is often air, ceramic, paper, plastic, or mica .

9.2 Capacitors Capacitors II When a voltage source v is connected to the capacitor, the source deposits a positive charge q on one plate and a negative charge –q on the other. The charges will be equal in magnitude The amount of charge is proportional to the voltage: Where C is the capacitance

Capacitors III The unit of capacitance is the Farad (F) One Farad is 1 Coulomb/Volt Most capacitors are rated in picofarad (pF) and microfarad (μF) Capacitance is determined by the geometry of the capacitor:

9.2 Capacitors Stored Energy The current passing into a capacitor during charging for a time, t, can be defined as: The energy stored in the capacitor will be:

Example and Problem Example 9.1 Calculate the charge. 9.2 Capacitors Example and Problem Example 9.1 Calculate the charge. Practice Problem 9.1 (a) Calculate the charge. (b) Find the energy.

9.3 Electric Fields Capacitors store their energy in electric fields The fields originate from the charges stored on the plates. The electric flux, Ψ, between parallel plates of area A with charge Q is: The electric flux density is:

9.3 Electric Fields Electric Fields The electric field strength E is inversely proportional to the plate spacing. The field and the flux density are related: here  is the permittivity of the dielectric. These relationships may be combined in order to develop a formula for the capacitance of a parallel plate capacitor or

9.3 Electric Fields Capacitance Value As can be seen, geometry and materials determine the value of the capacitor: Larger surface area means bigger capacitance. The smaller spacing between the plates also increases capacitance Higher permittivity increases capacitance

Dielectric Properties 9.3 Electric Fields Dielectric Properties Materials and their dielectric constants

Example and Problem Example 9.2 Calculate the capacitance. 9.3 Electric Fields Example and Problem Example 9.2 Calculate the capacitance. Practice Problem 9.2 Determine the capacitance.

9.4 Types of Capacitors 9.4 Types of Capacitors The most common types of capacitors are film capacitors with polyester, polystyrene, or mica. To save space, these are often rolled up before being housed in metal or plastic films Electrolytic caps (shown here) have a very high capacitance

9.4 Types of Capacitors Types of Capacitors II Trimmer caps have a range of values that they can be set to Variable air caps can be adjusted by turning a shaft attached to a set of moveable plates

Applications for Capacitors 9.4 Types of Capacitors Applications for Capacitors Capacitors have a wide range of applications, some of which are: Blocking DC Passing AC Shift phase Store energy Suppress noise Start motors

9.5 Series and Parallel Capacitors We learned with resistors that applying the equivalent series and parallel combinations can simply many circuits. Starting with N parallel capacitors, one can note that the voltages on all the caps are the same Applying KCL:

9.5 Series and Parallel Capacitors Parallel Capacitors II Taking into consideration the current voltage relationship of each capacitor: Thus From this we find that parallel capacitors combine as the sum of all capacitance

9.5 Series and Parallel Capacitors Series Capacitors Turning our attention to a series arrangement of capacitors: Here each capacitor shares the same current Applying KVL to the loop: Now apply the voltage current relationship

9.5 Series and Parallel Capacitors Series Capacitors II Thus From this we see that the series combination of capacitors resembles the parallel combination of resistors.

9.5 Series and Parallel Capacitors Combining capacitors in parallel is equivalent to increasing the surface area of the capacitors: This would lead to an increased overall capacitance (as is observed) A series combination can be seen as increasing the total plate separation This would result in a decrease in capacitance (as is observed)

9.5 Series and Parallel Capacitors Example and Problem Example 9.3 (a) Determine the total capacitance. (b) Find the total energy stored. Example 9.5 Find the voltage.

9.6 Current Voltage Relationship Using the formula for the charge stored in a capacitor, we can find the current voltage relationship Take the first derivative with respect to time gives: This assumes the passive sign convention

9.6 Current Voltage Relationship Properties of Capacitors For ideal capacitors, when the voltage is not changing, the current through the capacitor is zero. with DC applied to the terminals no current will flow. Except, the voltage on the capacitor’s plates can’t change instantaneously. An abrupt change in voltage would require an infinite current! This means if the voltage on the cap does not equal the applied voltage, charge will flow and the voltage will finally reach the applied voltage.

9.6 Current Voltage Relationship Properties of Capacitors II An ideal capacitor does not dissipate energy, meaning stored energy may be retrieved later A real capacitor has a parallel-model leakage resistance, leading to a slow loss of the stored energy internally This resistance is typically very high, on the order of 100 MΩ and thus can be ignored for many circuit applications.

9.6 Current Voltage Relationship Example and Problem Example 9.6 Determine current. Example 9.7 Obtain energy stored.

9.7 Charging and Discharging a Capacitor Charging Cycle Consider a battery connected in series to a capacitor and a resistor. Assume that the capacitor is not charged at first. At t=0 the switch is closed.

9.7 Charging and Discharging a Capacitor Charging Cycle II At any time the capacitor voltage is: Where V0 is the initial voltage. Since V0=0 this can be written as:

9.7 Charging and Discharging a Capacitor Charging Cycle III From this the charging current is: The time it takes to charge to 1/e of the full charge, or 36.8% is called the time constant  for the circuit.

9.7 Charging and Discharging a Capacitor Charging Current Once again we can determine the charging current from the resistor’s voltage drop or As can be seen, the current decreases towards zero as time goes on.

9.7 Charging and Discharging a Capacitor For discharging we consider the source free RC circuit shown here. The initial voltage on the capacitor is V0. The resulting voltage as a function of time is:

9.7 Charging and Discharging a Capacitor Discharging II After five time constants, the capacitor has discharged to less than 1% of its starting value. This is regarded as the transient time. The capacitor is typically considered to be fully charged or discharged after this amount of time.

9.7 Charging and Discharging a Capacitor Example and Problem Example 9.8 (a) Calculate the transient period. (b) Find vC, vR, and i. Example 9.10 Calculate the initial energy.

Homework Read Text Chapter 10. Inductance, pp. 267-285 Prepare Presentation Solve Problems 9.5, 9.10, 9.15, 9.22, 9.40, 9.44, 9.47 Computer Analysis 9.67