“Teach A Level Maths” Statistics 1

Slides:



Advertisements
Similar presentations
“Teach A Level Maths” Statistics 1
Advertisements

“Teach A Level Maths” Vol. 1: AS Core Modules
10: Polynomials © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
42: Differentiating Parametric Equations © Christine Crisp “Teach A Level Maths” Vol. 2: A2 Core Modules.
6: Roots, Surds and Discriminant © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
The Binomial Distribution: Using Tables © Christine Crisp “Teach A Level Maths” Statistics 1.
49: A Practical Application of Log Laws © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
19: Laws of Indices © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
1: Straight Lines and Gradients © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
9a: Differentiating Harder Products © Christine Crisp “Teach A Level Maths” Vol. 2: A2 Core Modules.
22: Division and The Remainder Theorem © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
31: Arithmetic Sequences and Series © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
24: Indefinite Integration © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
44: Stretches of the Trigonometric Functions © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
47: More Logarithms and Indices
9: Linear and Quadratic Inequalities © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
25: Definite Integration © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
Finding the Normal Mean and Variance © Christine Crisp “Teach A Level Maths” Statistics 1.
12: Tangents and Gradients © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
8: Simultaneous Equations and Intersections © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
“Teach A Level Maths” Vol. 1: AS Core Modules
Cumulative Distribution Function
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
42: Harder Trig Equations
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Statistics 1
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Statistics 1
3: Quadratic Expressions Expanding Brackets and
Laws of Indices.
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
Linear Functions of a Discrete Random Variable
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Statistics 1
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
42: Harder Trig Equations
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
17: Circles, Lines and Tangents
“Teach A Level Maths” Vol. 1: AS Core Modules
47: More Logarithms and Indices
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 2: A2 Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 2: A2 Core Modules
“Teach A Level Maths” Vol. 2: A2 Core Modules
17: Circles, Lines and Tangents
Presentation transcript:

“Teach A Level Maths” Statistics 1 Scaling and Coding © Christine Crisp

Statistics 1 MEI/OCR "Certain images and/or photos on this presentation are the copyrighted property of JupiterImages and are being used with permission under license. These images and/or photos may not be copied or downloaded without permission from JupiterImages"

We are going to look at the effect on the mean and standard deviation (s.d.) of adding or multiplying each item in a data set by a constant. e.g. Consider the 3 sets of data below: The mean and standard deviation of set X are given by X Y Z x x+2 10x 1 3 10 2 4 20 5 30 6 40 7 50 and

We are going to look at the effect on the mean and standard deviation (s.d.) of adding or multiplying each item in a data set by a constant. e.g. Consider the 3 sets of data below: The mean and standard deviation of set X are given by X Y Z x x+2 10x 1 3 10 2 4 20 5 30 6 40 7 50 mean s.d. and Without working them out, can you see how the mean and s.d. of each of sets Y and Z are related to those of set X?

We are going to look at the effect on the mean and standard deviation (s.d.) of adding or multiplying each item in a data set by a constant. e.g. Consider the 3 sets of data below: The mean and standard deviation of set X are given by X Y Z x x+2 10x 1 3 10 2 4 20 5 30 6 40 7 50 mean s.d. and The mean of Set Y is increased by 2 but the s.d. is unchanged since the data are no more spread out than before.

We are going to look at the effect on the mean and standard deviation (s.d.) of adding or multiplying each item in a data set by a constant. e.g. Consider the 3 sets of data below: The mean and standard deviation of set X are given by X Y Z x x+2 10x 1 3 10 2 4 20 5 30 6 40 7 50 mean s.d. and The mean and s.d. of Set Z are each multiplied by 10.

So, adding 2 to each data item adds 2 to the mean but doesn’t change the s.d. ( Increasing all the data items by 2 doesn’t spread them out any more. ) Multiplying by 10 multiplies both the mean and the standard deviation by 10. Suppose we multiply and add: e.g. 5 4 3 2 1 x 52 42 32 22 12 10x+2 N.B. This means multiply by 10 and then add 2.

So, adding 2 to each data item adds 2 to the mean but doesn’t change the s.d. ( Increasing all the data items by 2 doesn’t spread them out any more. ) Multiplying by 10 multiplies both the mean and the standard deviation by 10. Suppose we multiply and add: e.g. mean 5 4 3 2 1 x 52 42 32 22 12 10x+2 s.d. N.B. This means multiply by 10 and then add 2.

So, adding 2 to each data item adds 2 to the mean but doesn’t change the s.d. ( Increasing all the data items by 2 doesn’t spread them out any more. ) Multiplying by 10 multiplies both the mean and the standard deviation by 10. Suppose we multiply and add: e.g. mean s.d. x 1 2 3 4 5 10x+2 12 22 32 42 52 N.B. This means multiply by 10 and then add 2.

In general, we can write the results as follows: then and If Adding a constant to all items of data does not alter the standard deviation. e.g.1 A set of data has a mean of 8 and a standard deviation of 3. If the data are coded using the formula where x is the original variable and y is the new variable, find the new mean and standard deviation. Solution: and So, and

e.g.2 A set of exam results have a mean of 36 and standard deviation of 8. They are to be coded so that the mean is 50 and the standard deviation is 10. What formula must be applied to each data item? What does an original mark of 72 become? Solution: (a) Let x represent an original mark and y the new coded mark. Then, where and So, Also, where and So, Solving equation (2), Substituting in (1), The formula is

e.g.2 A set of exam results have a mean of 36 and standard deviation of 8. They are to be coded so that the mean is 50 and the standard deviation is 10. What formula must be applied to each data item? What does an original mark of 72 become? Solution: The formula is (b) Substitute x = 72 in

Exercise 1. The mean age of 5 children is 11·3 years. The standard deviation of their ages is 4·1 years. What will be the values of the mean and standard deviation in one year? 2. A set of data given by x is scaled using the formula Find the values of a and b if the mean of 2·45 is scaled to 0 and the standard deviation of 0·97 is scaled to 1.

Solutions: 1. The mean age of 5 children is 11·3 years. The standard deviation of their ages is 4·1 years. What will be the values of the mean and standard deviation in one year?

2. A set of data given by x is scaled using the formula Find the values of a and b if the mean of 2·45 is scaled to 0 and the standard deviation of 0·97 is scaled to 1. Solution: and Solving equation (2), Substituting in (1), The formula is

The following slides contain repeats of information on earlier slides, shown without colour, so that they can be printed and photocopied. For most purposes the slides can be printed as “Handouts” with up to 6 slides per sheet.

Z Y X s.d. mean 50 7 5 40 6 4 30 3 20 2 10 1 10x x+2 x The mean and standard deviation of set X are given by The mean and s.d. of Set Z are each multiplied by 10. The data set X has been modified to give sets Y and Z. The mean of Set Y is increased by 2 but the s.d. is unchanged since the data are not spread out more than before. and

So, adding 2 to each data item adds 2 to the mean but doesn’t change the s.d. Multiplying by 10 multiplies both the mean and the standard deviation by 10. ( Increasing all the data items by 2 doesn’t spread them out any more. ) Suppose we multiply and add: e.g. 32 3 mean 1·58 5 4 2 1 x 52 15·8 42 22 12 10x+2 s.d. N.B. This means multiply by 10 and then add 2.

In general, we can write the results as follows: then and If Adding a constant to all items of data does not alter the standard deviation. Solution: e.g.1 A set of data has a mean of 8 and a standard deviation of 3. If the data are coded using the formula where x is the original variable and y is the new variable, find the new mean and standard deviation. and So,

e.g.2 A set of exam results have a mean of 36 and standard deviation of 8. They are to be coded so that the mean is 50 and the standard deviation is 10. What formula must be applied to each data item? What does an original mark of 72 become? Solution: (a) Let x represent an original item and y the new coded value. Solving equation (2), Substituting in (1), The formula is Then, (b) Substitute x = 72 in