Introduction To Probability

Slides:



Advertisements
Similar presentations
Basic Concepts of Probability Probability Experiment: an action,or trial through which specific results are obtained. Results of a single trial is an outcome.
Advertisements

Pertemuan 03 Teori Peluang (Probabilitas)
Introduction to Probability Experiments Counting Rules Combinations Permutations Assigning Probabilities.
Introduction to Probability
Chapter 4 Introduction to Probability n Experiments, Counting Rules, and Assigning Probabilities and Assigning Probabilities n Events and Their Probability.
Chapter 4 Introduction to Probability
Chapter 4 Introduction to Probability
1 1 Slide © 2009 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University.
Introduction to probability BSAD 30 Dave Novak Source: Anderson et al., 2013 Quantitative Methods for Business 12 th edition – some slides are directly.
Introduction to Probability Uncertainty, Probability, Tree Diagrams, Combinations and Permutations Chapter 4 BA 201.
Chapter 4 Introduction to Probability Experiments, Counting Rules, and Assigning Probabilities Events and Their Probability Some Basic Relationships of.
Business and Economics 7th Edition
1 1 Slide 2009 University of Minnesota-Duluth, Econ-2030 (Dr. Tadesse) Chapter 4 __________________________ Introduction to Probability.
1 1 Slide © 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
Elementary Probability Theory
Chapter 4 Probability.
Chapter 4 Basic Probability
Chapter 4 Probability Copyright © 2014 by The McGraw-Hill Companies, Inc. All rights reserved.McGraw-Hill/Irwin.
Basic Concepts and Approaches
© 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University.
Introduction to Probability n Experiments and the Sample Space n Assigning Probabilities to Experimental Outcomes Experimental Outcomes n Events and Their.
1 1 Slide STATISTICS FOR BUSINESS AND ECONOMICS Seventh Edition AndersonSweeneyWilliams Slides Prepared by John Loucks © 1999 ITP/South-Western College.
1 1 Slide 統計學 Fall 2003 授課教師:統計系余清祥 日期: 2003 年 10 月 14 日 第五週:機率論介紹.
Copyright © 2010 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin Chapter 4 Probability.
1 1 Slide © 2003 South-Western/Thomson Learning TM Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
Econ 3790: Business and Economics Statistics Instructor: Yogesh Uppal
1 1 Slide © 2001 South-Western/Thomson Learning  Anderson  Sweeney  Williams Anderson  Sweeney  Williams  Slides Prepared by JOHN LOUCKS  CONTEMPORARYBUSINESSSTATISTICS.
Business and Finance College Principles of Statistics Eng
Introduction to Probability  Probability is a numerical measure of the likelihood that an event will occur.  Probability values are always assigned on.
1 1 Slide © 2016 Cengage Learning. All Rights Reserved. Probability is a numerical measure of the likelihood Probability is a numerical measure of the.
1 Slide Slide Probability is conditional. Theorems of increase of probabilities. Theorems of addition of probabilities.
1 1 Slide © 2004 Thomson/South-Western Slides Prepared by JOHN S. LOUCKS St. Edward’s University Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
2-1 Sample Spaces and Events Random Experiments Figure 2-1 Continuous iteration between model and physical system.
Basic Concepts of Probability Coach Bridges NOTES.
Chapter 4 Probability ©. Sample Space sample space.S The possible outcomes of a random experiment are called the basic outcomes, and the set of all basic.
Introduction to Probability
Business Statistics: A Decision-Making Approach, 7e © 2008 Prentice-Hall, Inc. Chap 4-1 Business Statistics: A Decision-Making Approach 7 th Edition Chapter.
1 1 Slide © 2003 Thomson/South-Western. 2 2 Slide © 2003 Thomson/South-Western Chapter 4 Introduction to Probability n Experiments, Counting Rules, and.
1 Chapter 4 – Probability An Introduction. 2 Chapter Outline – Part 1  Experiments, Counting Rules, and Assigning Probabilities  Events and Their Probability.
1 1 Slide © 2004 Thomson/South-Western Assigning Probabilities Classical Method Relative Frequency Method Subjective Method Assigning probabilities based.
1 1 Slide Slides Prepared by JOHN S. LOUCKS St. Edward’s University © 2002 South-Western /Thomson Learning.
1 1 Slide © 2007 Thomson South-Western. All Rights Reserved Chapter 4 Introduction to Probability Experiments, Counting Rules, and Assigning Probabilities.
1 1 Slide Introduction to Probability Assigning Probabilities and Probability Relationships Chapter 4 BA 201.
1 1 Slide IS 310 – Business Statistics IS 310 Business Statistics CSU Long Beach.
BIA 2610 – Statistical Methods
Chapter 4 Probability, Randomness, and Uncertainty.
+ Chapter 5 Overview 5.1 Introducing Probability 5.2 Combining Events 5.3 Conditional Probability 5.4 Counting Methods 1.
Copyright ©2004 The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 4-1 Probability and Counting Rules CHAPTER 4.
1 Probability- Basic Concepts and Approaches Dr. Jerrell T. Stracener, SAE Fellow Leadership in Engineering EMIS 7370/5370 STAT 5340 : PROBABILITY AND.
Econ 3790: Business and Economics Statistics Instructor: Yogesh Uppal
Copyright © 2011 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin Chapter 4 Probability.
Sets and Probability Chapter 7. Ch. 7 Sets and Probabilities 4-2 Basic Concepts of Probability 4-3 Addition Rule 4-4 Multiplication Rule 4-5 Multiplication.
1 1 Slide HJ copyrights Chapter 4 Introduction to Probability n Experiments, Counting Rules, and Assigning Probabilities Assigning Probabilities n Events.
Lecture Slides Elementary Statistics Twelfth Edition
Chapter 4 - Introduction to Probability
Math a - Sample Space - Events - Definition of Probabilities
Chapter 3 Probability.
Chapter 4 Basic Probability.
Probability and Counting Rules
Introduction to Probability
Statistics for 8th Edition Chapter 3 Probability
Chapter 4 – Probability Concepts
Chapter 4 Basic Probability.
Elementary Statistics 8th Edition
St. Edward’s University
St. Edward’s University
Presentation transcript:

Introduction To Probability Chapter TWO Introduction To Probability

Chapter 4 Introduction to Probability Experiments, Counting Rules, and Assigning Probabilities Events and Their Probability Some Basic Relationships of Probability Conditional Probability Bayes’ Theorem

Probability Probability is a numerical measure of the likelihood that an event will occur. Probability values are always assigned on a scale from 0 to 1. A probability near 0 indicates an event is very unlikely to occur. A probability near 1 indicates an event is almost certain to occur. A probability of 0.5 indicates the occurrence of the event is just as likely as it is unlikely.

An Experiment and Its Sample Space An experiment is any process that generates well-defined outcomes. The sample space for an experiment is the set of all experimental outcomes. A sample point is an element of the sample space, any one particular experimental outcome.

A Counting Rule for Multiple-Step Experiments If an experiment consists of a sequence of k steps in which there are n1 possible results for the first step, n2 possible results for the second step, and so on, then the total number of experimental outcomes is given by (n1)(n2) . . . (nk). A helpful graphical representation of a multiple-step experiment is a tree diagram.

Example: Salim Investments A Counting Rule for Multiple-Step Experiments Bradley Investments can be viewed as a two-step experiment; it involves two stocks, each with a set of experimental outcomes. PDO: n1 = 4 Oman Cement: n2 = 2 Total Number of Experimental Outcomes: n1n2 = (4)(2) = 8

Counting Rule for Combinations Another useful counting rule enables us to count the number of experimental outcomes when n objects are to be selected from a set of N objects. Number of combinations of N objects taken n at a time where N! = N(N - 1)(N - 2) . . . (2)(1) n! = n(n - 1)( n - 2) . . . (2)(1) 0! = 1

Counting Rule for Permutations A third useful counting rule enables us to count the number of experimental outcomes when n objects are to be selected from a set of N objects where the order of selection is important. Number of permutations of N objects taken n at a time

Assigning Probabilities Classical Method Assigning probabilities based on the assumption of equally likely outcomes. Relative Frequency Method Assigning probabilities based on experimentation or historical data. Subjective Method Assigning probabilities based on the assignor’s judgment.

Classical Method If an experiment has n possible outcomes, this method would assign a probability of 1/n to each outcome. Example Experiment: Rolling a die Sample Space: S = {1, 2, 3, 4, 5, 6} Probabilities: Each sample point has a 1/6 chance of occurring.

Relative Frequency Method Lucas would like to assign probabilities to the number of floor polishers it rents per day. Office records show the following frequencies of daily rentals for the last 40 days. Number of Number Polishers Rented of Days 0 4 1 6 2 18 3 10 4 2

Relative Frequency Method The probability assignments are given by dividing the number-of-days frequencies by the total frequency (total number of days). Number of Number Polishers Rented of Days Probability 0 4 .10 = 4/40 1 6 .15 = 6/40 2 18 .45 etc. 3 10 .25 4 2 .05 40 1.00

Subjective Method When economic conditions and a company’s circumstances change rapidly it might be inappropriate to assign probabilities based solely on historical data. We can use any data available as well as our experience and intuition, but ultimately a probability value should express our degree of belief that the experimental outcome will occur. The best probability estimates often are obtained by combining the estimates from the classical or relative frequency approach with the subjective estimates

Complement of an Event The complement of event A is defined to be the event consisting of all sample points that are not in A. The complement of A is denoted by Ac. The Venn diagram below illustrates the concept of a complement. Event A A C

Union of Two Events The union of events A and B is the event containing all sample points that are in A or B or both. The union is denoted by A B The union of A and B is illustrated below Event B Event A

Mutually Exclusive Events Two events are said to be mutually exclusive if the events have no sample points in common. That is, two events are mutually exclusive if, when one event occurs, the other cannot occur. Event A Event B