Major Histocompatibility Complex (MHC)

Slides:



Advertisements
Similar presentations
Transplant Immunobiology
Advertisements

Chapter 9 Major Histocompatibility Complex (MHC)
Antigen Presentation K.J. Goodrum Department of Biomedical Sciences Ohio University 2005.
Principles of Immunology Major Histocompatibility Complex 2/28/06 “Change is not merely necessary for life. It is life.” A Toffler.
A Few More Things About B Cell Development
Lecture outline Capture of antigens from sites of entry and display of antigens to T cells Function of MHC molecules as the peptide display molecules of.
Lecture 4 January 30, 2006 End of Chapter 3: codominance through complementation.
Lecture 3 clinical immunology Antigen Presenting Cells
Antigen Recognition by T Lymphocytes
Transplantation MCB150 Beatty
Principles of Immunology Transplantation Immunology 4/25/06
Major Histocompatibility Complex (MHC) Department of Microbiology.
Chapter 8 Major Histocompatibility Complex Dr. Capers
The Major Histocompatibility Complex And Antigen Presentation
Lecture outline Capture of antigens from sites of entry and display of antigens to T cells Function of MHC molecules as the peptide display molecules of.
Institute of Immunology, ZJU
1 Transplantation therapy for terminal organ failure or tissue damage by transfer of healthy organ or tissue ( graft) donor - the individual who provides.
Antigen Processing & Presentation
Major Histocompatibility Complex and Transplantation Major histocompatibility complex (MHC) proteins were discovered for the first time with the advent.
Cell Mediated Immunity (CMI)

Fe A. Bartolome, MD, FPASMAP Department of Microbiology Our Lady of Fatima University.
MAJOR HISTOCOMPATIBILITY COMPLEX. MAJOR HISTOCOMPATIBILITY COMPLEX (MHC): Is a segment of the short arm (p) of chromosome 6 containing several genes These.
Cell Mediated Immunity
TRANSPLANTATION & tissue rejection
Transplantation Immunology Unit College of Medicine
Basic Immunology University of Tabuk Faculty of Applied Medical Science Department of Medical Laboratory Technology Mr.AYMAN.S.YOUSIF MSc.Medical Microbiology.
Transplantation Prof. Zahid Shakoor College of Medicine King Saud University.
Specific Defenses of the Host Part 2 (acquired or adaptive immunity)
Lecture 19 November 16 th 2010 Quiz 2 scheduled for November 23 rd not November 18th.
Lecture 10 Immunology Transplantation Dr. Dalia Galal.
Autoimmune Diseases How Do the Immune Cells of the Body Know What to Attack and What Not To Attack ?
 Transplantation is the process of taking cells, tissues, or organs, called a,graft, from one individual and placing them into a different individual.
Antigen Processing and Presentation
Immunology Lecture 3 Antigen Recognition by T Lymphocytes
MHC genes and Products Chromosome 6 contains human MHC called HLA "Human Leukocyte Ag". Two sets of MHC genes MHC class I MHC class II And their cell –
Chapter 43 The Immune System.
Chapter 7. 주조직적합성 복합체 1. 주조직적합성 복합체 (MHC)의 발견 2. MHC 분자의 구조
T Cell Receptor (TCR) & MHC Complexes-Antigen Presentation
Major Histocompatibility Complex
Adaptive immunity antigen recognition Y Y Y Y Y Y Y Y Y invading
Immune system-Acquired/Adaptive immunity
Transplantation Immunology Unit College of Medicine
Chapter 24 The Immune System.
Antigen Processing & Presentation
MHC Class II Antigen Processing
Antigen presenting cells and antigen presentation
Transplantation Immunology
Cell Mediated Immunity
Cell Mediated Immunity
Transplantation David Straus, Ph.D. Objectives
Transplantation Immunology Unit College of Medicine
Transplantation Pathology
The Major Histocompatibility Complex (MHC)
Adaptive Immune Response (Cell Mediated Immunity)
Major Histocompatibility Complex
Chapter 8 Major Histocompatibility Complex
Other Cells of Immune System
Major Histocompatibility Complex (MHC) and its encoding molecules
Chapter 8 Major Histocompatibility Complex Dr. Capers
Lymphoid system.
HLA and antigen presentation
The major histocompatibility complex (MHC) and MHC molecules
The Major Histocompatibility Complex (MHC)
Kidney Transplant Dr. Basu.
Transplantation Immunology
Cell Mediated Immunity
Antigen Processing and Presentation
Human Leukocyte Antigen (HLA)
Chapter 24 The Immune System.
Presentation transcript:

Major Histocompatibility Complex (MHC)

Major Histocompatibility Complex (MHC) * The MHC is a closely linked complex of genes that govern production of the major histocompatibility * In humans, MHC resides on the short arm of chromosome 6 * Three genes (HLA-A, HLA-B, HLA-C) code for the class I MHC proteins * Several HLA-D loci determine the class II MHC proteins i.e. DP, DQ and DR * HLA genes are very diverse (polymorphic) i.e. there are many alleles of the class I and II genes

The Human Leukocyte Antigen (HLA) System Essential to immune function: HLA molecules present peptide antigens to the immune system (T-cells) Important for self versus non-self distinction

Major Histocompatibility Complex (MHC) * Between the class I and class II gene loci, there is a third locus (Class III) * This locus contains genes encoding tumor necrosis factor, lymphotoxin and two complement components (C2 and C4) * Class III antigens do not participate in MHC restriction or graft rejection

MHC Class I Antigens * Class I MHC antigens are : HLA-A, HLA-B and HLA-C * These antigens are glycoproteins found on surfaces of all nucleated human cells and on platelets * HLA-A contains 24 different antigenic specificities, HLA-B contains 52 and HLA-C contains 11 * Class I MHC antigens are involved of MHC restriction of cell mediated cytotoxicity

HLA Class I Monitors Inside of the Cell Tapasin CR CN The MHC class I and class II molecules present antigens from different sources. Class I molecules present intracellular antigens that are processed in the cytoplasm and pumped into the endoplasmic reticulum, where new HLA molecules are being assembled. Processing of the antigens is performed by the proteosome, a multimeric enzyme composed of 28 subunits. Two subunits are encoded by the LMP genes found within the HLA region of the chromosome. The subunits may change in response to IFN-. LMP2, LMP7 and a third component, MECL-1, are induced by IFN- and displace the constitutive components and favor the processing of new peptides, thus insuring that newly synthesized viral proteins will be amply represented on the cell surface. The proteosome also favors the cleavage of proteins into 8-10 amino acids with hydrophobic or basic carboxy termini that fit nicely into the peptide binding groove of the HLA molecule. Peptides that are processed in this manner are transported into the endoplasmic reticulum by TAP (transporter associated with antigen), which is comprised of two subunits, TAP-1 and TAP-2. TAP-2 as an ATP binding site, which regulates the active transport of peptides into the lumen of the ER. The TAP transporter has some specificity, preferring peptides of >8 amino acids with hydrophobic or basic amino acids at the carboxy terminus. This is the preferred peptide for binding in the MHC groove. The newly synthesized HLA molecule is maintained in a partially folded conformation by calnexin (not shown). When 2-microglobulin binds to the HLA molecule, the complex dissociates from calnexin and binds a complex of calreticulin and tapasin, which then bind to TAP-1. The proper binding of a peptide to the HLA molecule dissociates the complex, and the HLA molecule is then transported through the Golgi complex to the cell surface. Dr. Brian Freed

MHC Restriction * Endogenously processed cytosolic peptides in virus infected cells or tumor cells are transported to the surface of the cells * They bind to MHC I molecules to be recognized by cytotoxic T-cells which then kill these cells * In other words; T-cells are only activated when they recognize both antigen and class I MHC molecules in association

MHC Class II Antigens Class II antigens are: HLA-DP, HLA-DQ, HLA-DR antigens These antigens are glycoproteins found on the surface of macrophages, B-cells, Dentritic cells, langerhans cells of skin and activated T cells HLA-DP contain 6 different antigenic specificities, HLA-DQ contains 9 and HLA-DR contains 20

HLA Class II Monitors Outside of Cell Peptides Extra-cellular Proteins DM monitors peptide specificity for DR The presentation of peptides on MHC class II molecules is quite different. HLA-DR and related class II molecules are also assembled in the endoplasmic reticulum, but the associate with a third protein known as the invariant chain, which prevents peptide binding. The invariant chain is processed within endosomes to CLIP (class II-associated invariant chain peptide). In the presence of HLA-DM molecules, CLIP dissociates from HLA-DR or DQ molecules and allows binding of new peptides that have been endocytosed from the extracellular environment. Thus, MHC class II molecules differ from MHC class I molecules in that they preferentially present extracellular antigens rather intracellular ones. HLA-DM serves to ‘edit’ peptide binding, promoting association with high affinity peptides over lower affinity peptides. DM Dr. Brian Freed

MHC Class II Antigens * Helper T-cells recognize antigens on antigen-presenting cells only when the antigens are presented on the surface of cells in association with class II MHC * Class II antigens react with the CD4 molecule on the helper T-cells which secrete cytokines

Class I MHC and Class II MHC MHC Class I MHC Class II Nomenclature HLA-A, HLA-B, HLA-C HLA-DP, HLA-DQ, HLA-DR Found on All nucleated somatic cells Macrophages, B-cells, Dendritic cells, langerhans cells of skin and activated T cells Recognized by CD8 TC cells CD4 TH cells Functions Presentation of Ag to TC cells leading to elimination of tumor or infected host cell Presentation of Ag to TH cells which secrete cytokines

Class I (1.1 Mb) Class II (2.2 Mb) Class III (0.7 Mb) Complement & cytokines Class II (2.2 Mb)

HLA Genetic Nomenclature Gene low high resolution typing “subtype”=01 Allele: HLA-DRB1*0401 Haplotype: HLA-DRB1*0401 HLA-DQB1*0302 HLA-DRB1*0301 HLA-DQB1*0201 DRB1*02 Genotype: HLA-DRB1*04 HLA-DQB1*0302 J. Noble

Antigen–presenting cells (APCs): monocytes, macrophages, dendritic cells, B cells Teaching slides: www.barbaradaviscenter.com

Humoral Versus Cellular Immune Response

Transplantation and Graft Rejection

Types of grafts 1) Autografts : 2) Isografts : The transfer of an individual’s own tissues from place to place e.g. Skin grafts (regularly accepted) 2) Isografts : Transfer of tissues between genetically identical persons e.g. Identical twins ( accepted permanently)

Types of grafts 3) Allografts (homograft): members of same species - Transfer of a graft between genetically different members of same species e.g from one human to another - Rejection occur if donor and recipient are not matched 4) Xenograft (heterograft): - Transfer of tissues between different species - Always rejected

Mechanism Of Graft Rejection 1) Both TH and TC are activated - TC cells destroy graft cells by direct contact TH cells secrete cytokines that attract and activate macrophages, NK cells and polymorphs leading to cellular infiltration and destruction of graft (Type IV) - B cells recognize foreign antigens on the graft and produce antibodies which bind to graft cells and . Activate complement causing cell lysis . Enhance phagocytosis, i.e. opsonization (Type II) . Lead to ADCC by macrophages, NK,PML - Immune complex deposition on the vessel walls induce platelets aggregation and microthrombi leading to ischemia and necrosis of graft (Type II)

Types Of Graft Rejection !) Hyperacute rejection: - It occurs hours after transplantation - In individual with preformed antibodies either due to - blood groups incompatibility or previous sensitization by blood transfusion, previous transplantation 2) Acute Rejection: - It occurs 10 to 30 days after transplantation - It is mainly T-cell mediated 3) Chronic or late rejection: - It occurs over a period of months or years - It may be cell mediated, antibody mediated or both

Graft Versus Host (GVH) Reaction * An immunologically competent graft is transplanted into an immunologically suppressed recipient (host) * The grafted cells survive and react against the host cells i.e instead of reaction of host against the graft, the reverse occurs * GVH reaction is characterized by fever, pancytopenia, weight loss, rash , diarrhea, hepatsplenomegaly and death