Plasma populations in the tail of induced magnetosphere

Slides:



Advertisements
Similar presentations
Mass composition of the escaping plasma at Mars Ella Carlsson IRF Kiruna Supervisors: Professor Sverker Fredriksson, LTU Professor Stas Barabash, IRF Ella.
Advertisements

Cluster Reveals Properties of Cold Plasma Flow May 15, 2009 Erik Engwall.
IWF Graz … 1 H. Lammer (1), M. L. Khodachenko (1), H. I. M. Lichtenegger (1), Yu. N. Kulikov (2), N. V. Erkaev (3), G. Wuchterl (4), P. Odert (5), M. Leitzinger.
1 Evolution of understanding of solar wind-gaseous obstacle interaction O. Vaisberg Space Research Institute (IKI), Moscow, Russia The third Moscow International.
V.B. Baranov and M.G. Lebedev 1) Institute for Problems in Mechanics of Russian Academy of Science, 2) Moscow State University The sorrow fate of the solar.
PRECIPITATION OF HIGH-ENERGY PROTONS AND HYDROGEN ATOMS INTO THE UPPER ATMOSPHERES OF MARS AND VENUS Valery I. Shematovich Institute of Astronomy, Russian.
Formation of the Magnetosphere 1 Solar Wind. Formation of the Magnetosphere 2 Solar Wind Bow Shock Magnetosheath.
Fine-scale 3-D Dynamics of Critical Plasma Regions: Necessity of Multipoint Measurements R. Lundin 1, I. Sandahl 1, M. Yamauchi 1, U. Brändström 1, and.
Non-magnetic Planets Yingjuan Ma, Andrew Nagy, Gabor Toth, Igor Sololov, KC Hansen, Darren DeZeeuw, Dalal Najib, Chuanfei Dong, Steve Bougher SWMF User.
Space Weather. Coronal loops Intense magnetic field lines trap plasma main_TRACE_loop_arcade_lg.jpg.
Budget and Roles of Heavy Ions in the Solar System M. Yamauchi, I. Sandahl, H. Nilsson, R. Lundin, and L. Eliasson Swedish Institute of Space Physics (IRF)
Solar wind interaction with the comet Halley and Venus
Solar wind-magnetosphere coupling Magnetic reconnection In most solar system environments magnetic fields are “frozen” to the plasma - different plasmas.
The Interaction of the Solar Wind with Mars D.A. Brain Fall AGU December 8, 2005 UC Berkeley Space Sciences Lab.
Summer student work at MSSL, 2009 Kate Husband – investigation of magnetosheath electron distribution functions. Flat-topped PSD distributions, correlation.
Storm-Time Dynamics of the Inner Magnetosphere: Observations of Sources and Transport Michelle F. Thomsen Los Alamos National Laboratory 27 June 2003.
OpenGGCM Simulation vs THEMIS Observations in an Dayside Event Wenhui Li and Joachim Raeder University of New Hampshire Marit Øieroset University of California,
Ionospheric photoelectrons at Venus: ASPERA-4 observations A.J. Coates 1,2 S.M.E. Tsang 1,2, R.A. Frahm 3, J.D. Winningham 3, S. Barabash 4, R. Lundin.
O. M. Shalabiea Department of Physics, Northern Borders University, KSA.
Or A Comparison of the Magnetospheres between Jupiter and Earth.
Expected Influence of Crustal Magnetic Fields on ASPERA-3 ELS Observations: Insight from MGS D.A. Brain, J.G. Luhmann, D.L. Mitchell, R.P. Lin UC Berkeley.
In-situ Observations of Collisionless Reconnection in the Magnetosphere Tai Phan (UC Berkeley) 1.Basic signatures of reconnection 2.Topics: a.Bursty (explosive)
Solar system science using X-Rays Magnetosheath dynamics Shock – shock interactions Auroral X-ray emissions Solar X-rays Comets Other planets Not discussed.
Magnetospheric Morphology Prepared by Prajwal Kulkarni and Naoshin Haque Stanford University, Stanford, CA IHY Workshop on Advancing VLF through the Global.
Solar System Physics Group Grande et al, Venus, RAS 2010 Solar wind interactions and Ionospheric loss mechanisms at Venus M Grande, A G Wood, I C Whittaker,
November 2006 MERCURY OBSERVATIONS - JUNE 2006 DATA REVIEW MEETING Review of Physical Processes and Modeling Approaches "A summary of uncertain/debated.
International Colloquium and Workshop "Ganymede Lander: scientific goals and experiments"
Tuija I. Pulkkinen Finnish Meteorological Institute Helsinki, Finland
Cusp O+ H+ e- "SPI" event #1 event #2 MLT energy ratio = 15~20 O+ H+ 68°CGLat66°CGLat 63°CGLat #1) Mono-energetic ion injection with O+ faster.
A TMOSPHERIC, O CEANIC AND S PACE S CIENCES UNIVERSITY of MICHIGAN Daniel J. Gershman, James A. Slavin, Jim M. Raines, Thomas H. Zurbuchen, Brian J. Anderson,
Computer Simulations in Solar System Physics Mats Holmström Swedish Institute of Space Physics (IRF) Forskarskolan i rymdteknik Göteborg 12 September 2005.
Brief introduction of YINGHUO-1 Micro-satellite for Mars environment exploration J. Wu, G. Zhu, H. Zhao, C. Wang, L. Lei, Y. Sun, W. Guo and S. Huang Center.
Introduction to Space Weather
Институт космических исследований Российской Академии наук Необычная магнитосфера Марса – сопоставление результатов предшествующих и последних исследований.
Space Research Institute Graz Austrian Academy of Sciences CERN, Geneve, June 2006 Helmut O. Rucker Exploring the Planets and Moons in our Solar System.
Magnetosphere-Ionosphere coupling processes reflected in
14 May JIM M. RAINES University of Michigan DANIEL J. GERSHMAN, THOMAS H. ZURBUCHEN, JAMES A. SLAVIN, HAJE KORTH, and BRIAN J. ANDERSON Magnetospheric.
Structure and dynamics of induced plasma tails César L. Bertucci Presented by Oleg Vaisberg Institute for Astronomy and Space Physics, Buenos Aires, Argentina.
The PLANETOCOSMICS Geant4 application L. Desorgher Physikalisches Institut, University of Bern.
1 Mars Micro-satellite Mission Japanese micro-satellite mission to Mars to study the plasma environment and the solar wind interaction with a weakly-magnetized.
Space Science MO&DA Programs - September Page 1 SS It is known that the aurora is created by intense electron beams which impact the upper atmosphere.
Earth’s Magnetosphere — A very quick introduction Weichao Tu - LASP of CU-Boulder CEDAR-GEM Joint Workshop - Santa Fe, NM - 06/26/2011.
SOLAR EXTREME EVENTS AND GRATE GEOMAGNETIC STORMS E.E. Antonova, M.V. Stepanova Skobeltsyn Institute of Nuclear Physics Moscow State University, Moscow,
Cold plasma: a previously hidden solar system particle population Mats André and Chris Cully Swedish Institute of Space Physics, Uppsala.
1 Hybrid Simulations of the Callisto - Magnetosphere Interaction Stas Barabash and Mats Holmström Swedish Institute of Space Physics, Kiruna, Sweden.
E.E. Antonova1,2, I.P. Kirpichev2,1, Yu.I. Yermolaev2
PARTICLES IN THE MAGNETOSPHERE
Mass Transport: To the Plasma Sheet – and Beyond!
Solar Wind Induced Escape on Mars and Venus. Mutual Lessons from Different Space Missions E. Dubinin Max-Planck Institute for Solar System Research, Katlenburg-Lindau,
Magnetic reconnection in the magnetotail: Geotail observations T. Nagai Tokyo Institute of Technology World Space Environment Forum 2005 May 4, 2005 Wednesday.
© Research Section for Plasma and Space Physics UNIVERSITY OF OSLO Daytime Aurora Jøran Moen.
24 January, 20011st NOZOMI_MEX Science Workshop, Jan, 2001 R. Lundin, M. Yamauchi, and H. Borg, Swedish Institute of Space Physics H. Hayakawa, M.
Lunar Surface Atmosphere Spectrometer (LSAS) Objectives: The instrument LSAS is designed to study the composition and structure of the Lunar atmosphere.
Impact of CIRs/CMEs on the ionospheres of Venus and Mars Niklas Edberg IRF Uppsala, Sweden H. Nilsson, Y. Futaana, G. Stenberg, D. Andrews, K. Ågren, S.
Multi-Fluid/Particle Treatment of Magnetospheric- Ionospheric Coupling During Substorms and Storms R. M. Winglee.
二维电磁模型 基本方程与无量纲化 基本方程. 无量纲化 方程化为 二维时的方程 时间上利用蛙跳格式 网格划分.
SS Special Section of JGR Space Physics Marks Polar’s 5th Anniversary September 4, 1996 This April special section is first of two Polar special sections.
Saturn Magnetosphere Plasma Model J. Yoshii, D. Shemansky, X. Liu SET-PSSD 06/26/11.
A Global Hybrid Simulation Study of the Solar Wind Interaction with the Moon David Schriver ESS 265 – June 2, 2005.
Source and seed populations for relativistic electrons: Their roles in radiation belt changes A. N. Jaynes1, D. N. Baker1, H. J. Singer2, J. V. Rodriguez3,4.
Plasma Wave Excitation Regions in the Earth’s Global Magnetosphere
Christina Chu University of Alaska Fairbanks Geophysical Institute
CEDAR Frontiers: High-Latitude Neutral Outflow Larry Gardner – Utah State University – Robert Schunk – Utah State University –
Paul Song Center for Atmospheric Research
Mass-loading effect in the exterior cusp and plasma mantle
MESSENGER observations of Mercury’s northern cusp
The Wakes and Magnetotails of Venus and Mars
Magnetospheric Modeling
Energy conversion boundaries
Oxygen Lifetimes at Europa
Presentation transcript:

Plasma populations in the tail of induced magnetosphere O. Vaisberg Space Research Institute (IKI), Moscow, Russia, Talk outlay Mars missions studying Martian magnetosphere Four plasma populations in the accretion tail Solar wind induced planetary ions flow Hot ions in the central current sheet Accelerated ions at the tail boundary Ionospheric outflow Venus is used as a proxy for some topics Conclusion Первый московский симпозиум по Солнечной системе (1M-S3) Исследования системы Марса

Mars probes in solar activity cycles Sputnik launch Первый московский симпозиум по Солнечной системе (1M-S3) Исследования системы Марса

First observations of hot planetary ions outflow on Mars orbiters The region of low-energy ions (30-100 eV) on the dayside and in the tail was found on Mars-2 and Mars-3 indication that the tail flow is a continuation of the dayside ion cusion [Vaisberg and Bogdanov, 1974]. Первый московский симпозиум по Солнечной системе (1M-S3) Исследования системы Марса

Heavy planetary ions in ionosheath and tail Dynamics of light and heavy ions in magnetosheath and in tail obtained by channel multipliers’ “mass-spectrometry” [Vaisberg, 1976]. Note the termination of light ions with transition to cometary ions flow at magnetic tail boundary. Первый московский симпозиум по Солнечной системе (1M-S3) Исследования системы Марса

Venus as another example of induced magnetosphere Первый московский симпозиум по Солнечной системе (1M-S3) Исследования системы Марса

Model of accretion magnetosphere Model of induced magnetosphere [Vaisberg and Zeleny, 1984] with mantle’s boundary defined by condition of replacement of the solar plasma by planetary ions. Equation of solar wind and loaded ion mass fluxes was used: NswMswVsw= RoNpl (r)ν mpl Comparison of computed sizes of planetary/cometary accretional magnetotail (abscissa) and measured ones (ordinate) for Venus, Mars, and comets Giacobini-Zinner and Halley. Первый московский симпозиум по Солнечной системе (1M-S3) Исследования системы Марса

Hot ions in central current sheet Первый московский симпозиум по Солнечной системе (1M-S3) Исследования системы Марса

Accelerated ions at the magnetopause Первый московский симпозиум по Солнечной системе (1M-S3) Исследования системы Марса

Accelerated ions in magnetopause current sheets Первый московский симпозиум по Солнечной системе (1M-S3) Исследования системы Марса

Acceleration of ions in boundary layer Первый московский симпозиум по Солнечной системе (1M-S3) Исследования системы Марса

Plasma structures at Venus Первый московский симпозиум по Солнечной системе (1M-S3) Исследования системы Марса

Tail flow - mass loss Barabash et al., ME/Aspera-3 Vaisberg et al., 1976. Mars-5 Verigin et al., 1991 Phobos-2/TAUS Lundin et al., 1989 Phobos-2/Aspera Barabash et al., ME/Aspera-3 Measured flux in the tail average 3 x 106 ions cm-2 s-1 2.5 x 107 3 x 106 < 1 x 106 Calculated mass loss 1 x 10 25 s–1 ~ 250 g s–1 5 x 10 24 s–1 150 g s–1 2 x 10 25 s–1 500 g s–1 3.9 x 10 23 s–1 18 g s–1 Первый московский симпозиум по Солнечной системе (1M-S3) Исследования системы Марса

Solar wind induced outflow in the tail Первый московский симпозиум по Солнечной системе (1M-S3) Исследования системы Марса

Conclusion • New picture of accretion magnetosphere of Mars/Venus • Four populations of plasma in accretion tail: Solar wind induced planetary ions flow Hot ions in the central current sheet Accelerated ions at the tail boundary Ionospheric outflow • There is basic understanding of their origin • The role of different mechanisms in atmospheric losses and their quantitative characteristics is not well established Первый московский симпозиум по Солнечной системе (1M-S3) Исследования системы Марса