Q35.1 Two sources S1 and S2 oscillating in phase emit sinusoidal waves. Point P is 7.3 wavelengths from source S1 and 4.3 wavelengths from source S2. As.

Slides:



Advertisements
Similar presentations
Diffraction, Gratings, Resolving Power Textbook sections 28-4 – 28-6 Physics 1161: Lecture 21.
Advertisements

Copyright © 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley PowerPoint ® Lectures for University Physics, Twelfth Edition – Hugh D. Young.
4/13/2017 5:04 PM Diffraction © 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be.
Why monochromatic? Why slit S 0 ?. In the double slit interference pattern: moving the slits farther apart will a) make the pattern spread out b) make.
Copyright © 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley PowerPoint ® Lectures for University Physics, Twelfth Edition – Hugh D. Young.
Chapter 34 The Wave Nature of Light; Interference
Diffraction Physics 202 Professor Lee Carkner Lecture 24.
Lecture 33 Review for Exam 4 Interference, Diffraction Reflection, Refraction.
Today 1/22  Light Interference: read Text 27.1,2  HW: 1/22 Handout “Interference (more than one frequency)” due Friday 1/24  Today: Questions? Example.
Double Slit Diffraction Physics 202 Professor Lee Carkner Lecture 27.
Diffraction Physics 202 Professor Lee Carkner Lecture 26.
Chapter 25: Interference and Diffraction
Chapter 35 Interference (cont.).
Diffraction, Gratings, Resolving Power
Multiple-Slit Interference Uniform slits, distance d apart. Light of wavelength. Screen L away “Thin” slits  compared to d) L >> d then path length difference.
Copyright © 2009 Pearson Education, Inc. Chapter 32 Light: Reflection and Refraction.
Copyright © 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley PowerPoint ® Lectures for University Physics, Twelfth Edition – Hugh D. Young.
Q35.1 Two sources S1 and S2 oscillating in phase emit sinusoidal waves. Point P is 7.3 wavelengths from source S1 and 4.3 wavelengths from source S2. As.
© 2012 Pearson Education, Inc. { Chapter 35 Interference (not given– computer problems)
Copyright © 2010 Pearson Education, Inc. ConcepTest Clicker Questions Chapter 28 Physics, 4 th Edition James S. Walker.
Dr. Quantum General Physics 2Light as a Wave1. General Physics 2Light as a Wave2 The Nature of Light When studying geometric optics, we used a ray model.
Physics Light: Geometric Optics 24.1 Waves versus Particles 24.2 Huygens’ Principle 24.3 Young’s double-slit Interference 24.5 Single-slit Diffractin.
Light Interference Continued…
Wave superposition If two waves are in the same place at the same time they superpose. This means that their amplitudes add together vectorially Positively.
Light of wavelength passes through a single slit of width a. The diffraction pattern is observed on a screen a distance x from the slit. Q double.
1 W14D2: Interference and Diffraction Experiment 6 Today’s Reading Course Notes: Sections
Example Two identical point sources produce water waves with a wavelength of 0.04 m. The sources are 0.1 m apart. What is the maximum angle for a line.
Interference & Diffraction Gratings
1. ConcepTest 24.2aPhase Difference I The two waves shown are 1) out of phase by 180 o 2) out of phase by 90 o 3) out of phase by 45 o 4) out of phase.
13.4 Double slit interference. From one source and two gaps 1 st bright fringe 1 st bright fringe central fringe.
Higher Physics – Unit Waves. a a λ λ crest trough Wave Theory All waves transmit energy. The energy of a wave depends on its amplitude. a = amplitude.
Chapter 24 Wave Optics Conceptual Quiz Questions.
Lecture 27 Physics 2102 Jonathan Dowling Ch. 35: Interference Christian Huygens
© 2012 Pearson Education, Inc. { Chapter 35 Interference.
Diffraction AP Physics B. Superposition..AKA….Interference One of the characteristics of a WAVE is the ability to undergo INTERFERENCE. There are TWO.
Chapter 24 The Wave Nature of Light
Young’s Double Slit Contents: Interference Diffraction Young’s Double Slit Angle Distance.
Physics 102: Lecture 21, Slide 1 Diffraction, Gratings, Resolving Power Physics 102: Lecture 21.
Physical Optics Ch 37 and 38. Physical Optics Light is an electromagnetic wave. Wave properties: Diffraction – wave bends around corners, spreads out.
© 2012 Pearson Education, Inc. Two sources S 1 and S 2 oscillating in phase emit sinusoidal waves. Point P is 7.3 wavelengths from source S 1 and 4.3 wavelengths.
Double the slit width a and double the wavelength
The Space Movie.
Chapter 24.
constructive interference. destructive interference.
Diffraction, Gratings, Resolving Power
Diffraction, Gratings, Resolving Power
Diffraction, Gratings, Resolving Power
Diffraction, Gratings, Resolving Power
Wave superposition If two waves are in the same place at the same time they superpose. This means that their amplitudes add together vectorially Positively.
The Wave Nature of Light
Interference of Light.
Diffraction and Thin Film Interference
Interference and the Wave Nature of Light
Concept Questions with Answers 8.02 W14D2
Light Interference Continued…
A. Double the slit width a and double the wavelength λ.
A –Level Physics: Waves and Quanta: Wave Phase and Interference
Example: 633 nm laser light is passed through a narrow slit and a diffraction pattern is observed on a screen 6.0 m away. The distance on the screen.
A. Double the slit width a and double the wavelength l.
Physics 1B03summer-Lecture 11
Interference – Young’s Double-Slit Experiment
Interference Introduction to Optics Coherent source
Two sources S1 and S2 oscillating in phase emit sinusoidal waves.
Chapter 35 Interference.
Diffraction, Gratings, Resolving Power
Diffraction, Gratings, Resolving Power
LEAD Tutors/Peer Instructors Needed!
Examples of single-slit diffraction (Correction !!)
Q35.1 Two sources S1 and S2 oscillating in phase emit sinusoidal waves. Point P is 7.3 wavelengths from source S1 and 4.3 wavelengths from source S2. As.
Diffraction, Gratings, Resolving Power
Presentation transcript:

Q35.1 Two sources S1 and S2 oscillating in phase emit sinusoidal waves. Point P is 7.3 wavelengths from source S1 and 4.3 wavelengths from source S2. As a result, at point P there is A. constructive interference. B. destructive interference. C. neither constructive nor destructive interference. D. not enough information given to decide.

A35.1 Two sources S1 and S2 oscillating in phase emit sinusoidal waves. Point P is 7.3 wavelengths from source S1 and 4.3 wavelengths from source S2. As a result, at point P there is A. constructive interference. B. destructive interference. C. neither constructive nor destructive interference. D. not enough information given to decide.

Q35.2 Two sources S1 and S2 oscillating in phase emit sinusoidal waves. Point P is 7.3 wavelengths from source S1 and 4.6 wavelengths from source S2. As a result, at point P there is A. constructive interference. B. destructive interference. C. neither constructive nor destructive interference. D. not enough information given to decide.

A35.2 Two sources S1 and S2 oscillating in phase emit sinusoidal waves. Point P is 7.3 wavelengths from source S1 and 4.6 wavelengths from source S2. As a result, at point P there is A. constructive interference. B. destructive interference. C. neither constructive nor destructive interference. D. not enough information given to decide.

Interference from two radio stations Two radio antennas are separated by 2.0 m. Both broadcast identical 750 MHz waves. If you walk around the antennas in a circle of radius 10 m, how many maxima will you detect?

Two coherent light sources

Interference from two radio stations revisited Radio station operating at 1500 kHz has two antennas spaced 400m apart. In which directions is the intensity greatest in the resulting radiation pattern far away (>> 400m) from the antennas? How many total regions of high intensity are there?

As the waves interfere, they produce fringes A red laser produces the following fringe pattern: What happens to fringe pattern if the spacing between slits increases? What happens if you shine a green laser (higher frequency) through the same slits? What happens if you move the screen farther away from the slits? Spacing between fringe pattern A) increases B) decreases C) stays the same

Q35.3 Coherent light passing through two slits (S1 and S2) produces a pattern of dark and bright areas on a distant screen. If the wavelength of the light is increased, how does the pattern change? A. The bright areas move closer together. B. The bright areas move farther apart. C. The spacing between bright areas remains the same, but the color changes. D. any of the above, depending on circumstances E. none of the above

A35.3 Coherent light passing through two slits (S1 and S2) produces a pattern of dark and bright areas on a distant screen. If the wavelength of the light is increased, how does the pattern change? A. The bright areas move closer together. B. The bright areas move farther apart. C. The spacing between bright areas remains the same, but the color changes. D. any of the above, depending on circumstances E. none of the above

Q35.4 Coherent light passing through two slits (S1 and S2) produces a pattern of dark and bright areas on a distant screen. What is the difference between the distance from S1 to the m = +3 bright area and the distance from S2 to the m = +3 bright area? A. three wavelengths B. three half-wavelengths C. three quarter-wavelengths D. not enough information given to decide

A35.4 Coherent light passing through two slits (S1 and S2) produces a pattern of dark and bright areas on a distant screen. What is the difference between the distance from S1 to the m = +3 bright area and the distance from S2 to the m = +3 bright area? A. three wavelengths B. three half-wavelengths C. three quarter-wavelengths D. not enough information given to decide

Q35.4 Coherent light passing through two slits (S1 and S2) produces a pattern of dark and bright areas on a distant screen. What is the difference between the phase from S1 to the m = +3 bright area and the distance from S2 to the m = +3 bright area? A. 3p/2 B. 3p C. 6p D. not enough information given to decide

A35.4 Coherent light passing through two slits (S1 and S2) produces a pattern of dark and bright areas on a distant screen. What is the difference between the phase from S1 to the m = +3 bright area and the distance from S2 to the m = +3 bright area? A. 3p/2 B. 3p C. 6p D. not enough information given to decide

Diffraction grating What is the first order diffraction peak (angle) for a grating with 600 slits per mm for red (700 nm) and violet (400nm) light? For a screen 1 m away, what distance away from the central peak is the first order peak? By what angle (max angle minus min angle) is the rainbow spread out for the first order diffraction? How many constructive interference peaks are there?

Fraunhofer diffraction and an example of analysis A red laser (700nm) is shown through a single slit. What is the slit width for this diffraction pattern?

Q36.1 Light of wavelength l passes through a single slit of width a. The diffraction pattern is observed on a screen that is very far from from the slit. Which of the following will give the greatest increase in the angular width of the central diffraction maximum? A. Double the slit width a and double the wavelength l. B. Double the slit width a and halve the wavelength l. C. Halve the slit width a and double the wavelength l. D. Halve the slit width a and halve the wavelength l.

A36.1 Light of wavelength l passes through a single slit of width a. The diffraction pattern is observed on a screen that is very far from from the slit. Which of the following will give the greatest increase in the angular width of the central diffraction maximum? A. Double the slit width a and double the wavelength l. B. Double the slit width a and halve the wavelength l. C. Halve the slit width a and double the wavelength l. D. Halve the slit width a and halve the wavelength l.

Intensity maxima in a single-slit pattern The expression for peak maxima is iterated for the strongest peak.

Q36.2 In a single-slit diffraction experiment with waves of wavelength l, there will be no intensity minima (that is, no dark fringes) if the slit width is small enough. What is the maximum slit width a for which this occurs? A. a = l/2 B. a = l C. a = 2l D. The answer depends on the distance from the slit to the screen on which the diffraction pattern is viewed.

A36.2 In a single-slit diffraction experiment with waves of wavelength l, there will be no intensity minima (that is, no dark fringes) if the slit width is small enough. What is the maximum slit width a for which this occurs? A. a = l/2 B. a = l C. a = 2l D. The answer depends on the distance from the slit to the screen on which the diffraction pattern is viewed.

Intensity from single slit Single slit pattern expands as slit width decreases

Multiple slit interference

Several slits More slits produces sharper peaks

Q36.3 In Young’s experiment, coherent light passing through two slits separated by a distance d produces a pattern of dark and bright areas on a distant screen. If instead you use 10 slits, each the same distance d from its neighbor, how does the pattern change? A. The bright areas move farther apart. B. The bright areas move closer together. C. The spacing between bright areas remains the same, but the bright areas become narrower. D. The spacing between bright areas remains the same, but the bright areas become broader.

A36.3 In Young’s experiment, coherent light passing through two slits separated by a distance d produces a pattern of dark and bright areas on a distant screen. If instead you use 10 slits, each the same distance d from its neighbor, how does the pattern change? A. The bright areas move farther apart. B. The bright areas move closer together. C. The spacing between bright areas remains the same, but the bright areas become narrower. D. The spacing between bright areas remains the same, but the bright areas become broader.

Michelson and Morley’s interferometer In this amazing experiment at Case Western Reserve, Michelson and Morley suspended their interferometer on a huge slab of sandstone on a pool of mercury (very stable, easily moved). As they rotated the slab, movement of the earth could have added in one direction and subtracted in another, changing interference fringes each time the device was turned a different direction. They did not change. This was an early proof of the invariance of the speed of light.