Warm Up Divide using long division ÷ ÷

Slides:



Advertisements
Similar presentations
Dividing Polynomials 6-3 Warm Up Lesson Presentation Lesson Quiz
Advertisements

Remainder and Factor Theorems
Long and Synthetic Division of Polynomials Section 2-3.
Dividing Polynomials Objectives
Chapter 6: Polynomials and Polynomial Functions Section 6
Section 5.4 Dividing Polynomials. Review of Long Division What terms do we use to describe 672 and 21? Because the reminder is zero, we know that 21 is.
Long Division of Polynomials
EXAMPLE 1 Use polynomial long division
Warm up. Lesson 4-3 The Remainder and Factor Theorems Objective: To use the remainder theorem in dividing polynomials.
Warm Up Divide using long division ÷ ÷
Synthetic Division. This method is used to divide polynomials, one of which is a binomial of degree one.
4-5, 4-6 Factor and Remainder Theorems r is an x intercept of the graph of the function If r is a real number that is a zero of a function then x = r.
HW: Pg #13-61 eoo.
6.8 Synthetic Division. Polynomial Division, Factors, and Remainders In this section, we will look at two methods to divide polynomials: long division.
Dividing Polynomials 6-3 Warm Up Lesson Presentation Lesson Quiz
Warm Up Divide using long division ÷ ÷
Dividing Polynomials 6-3 Warm Up Lesson Presentation Lesson Quiz
Section 3-3 Dividing Polynomials Objectives: Use Long Division and Synthetic Division to divide polynomials.
Bell Work Week #16 (12/4/13) Divide using long division. You’ve got 3 minutes ÷ ÷ 12.
Warm up  Divide using polynomial long division:  n 2 – 9n – 22 n+2.
Objective Use long division and synthetic division to divide polynomials.
7.4 The Remainder and Factor Theorems Use Synthetic Substitution to find Remainders.
Ch. 6.3 Dividing Polynomials. Divide x 2 + 2x – 30 by x – 5. ALGEBRA 2 LESSON 6-3 Dividing Polynomials – 30Subtract: (x 2 + 2x) – (x 2 – 5x) = 7x. Bring.
Objective Use long division and synthetic division to divide polynomials.
6.3 D IVIDING P OLYNOMIAL Use long division and synthetic division to divide polynomials. Use synthetic division to evaluate a polynomial Objective Electricians.
Holt McDougal Algebra 2 Dividing Polynomials How do we use long division and synthetic division to divide polynomials?
Warm Up Divide using long division ÷ Divide.
Holt Algebra Dividing Polynomials Synthetic division is a shorthand method of dividing a polynomial by a linear binomial by using only the coefficients.
Warm Up Divide using long division, if there is a remainder put it as a fraction ÷ ÷ x + 5y 23 7a – b Divide. 6x – 15y 3 7a 2.
Then/Now You factored quadratic expressions to solve equations. (Lesson 0–3) Divide polynomials using long division and synthetic division. Use the Remainder.
Chapter Dividing polynomials. Objectives  Use long division and synthetic division to divide polynomials.
Algebra 2 Divide x 2 + 2x – 30 by x – 5. Lesson 6-3 Dividing Polynomials – 30Subtract: (x 2 + 2x) – (x 2 – 5x) = 7x. Bring down –30. xDivide = x. x – 5.
3.2 Division of Polynomials. Remember this? Synthetic Division 1. The divisor must be a binomial. 2. The divisor must be linear (degree = 1) 3. The.
Holt Algebra Dividing Polynomials 6-3 Dividing Polynomials Holt Algebra 2 Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson Quiz Lesson.
Objective Use long division and synthetic division to divide polynomials.
Divide using long division.
Warm Up Divide using long division ÷ ÷ 2.1 Divide.
Dividing Polynomials 6-3 Warm Up Lesson Presentation Lesson Quiz
Dividing Polynomials 6-3 Warm Up Lesson Presentation Lesson Quiz
Warm Up Divide using long division ÷ Divide.
Dividing Polynomials 3-3 Warm Up Lesson Presentation Lesson Quiz
Warm Up Divide using long division ÷ ÷
Dividing Polynomials Using Factoring (11-5)
Introduction In mathematics, the word “remainder” is often used in relation to the process of long division. You are probably familiar with dividing whole.
6.3 Dividing polynomials.
Essential Questions How do we use long division and synthetic division to divide polynomials?
Warm-up 6-5 1) 2).
Warm Up Factor each expression. 1. 3x – 6y 2. a2 – b2
7.4 The Remainder and Factor Theorems
Dividing Polynomials Warm Up Lesson Presentation Lesson Quiz
DIVIDING POLYNOMIALS Synthetically!
Do Now Graph the following using a calculator: A) B)
Warm Up 1. Divide f(a) = 4a2 – 3a + 6 by a – 2 using any method.
Apply the Remainder and Factor Theorems Lesson 2.5
4.3 Division of Polynomials
Dividing Polynomials 3-3 Warm Up Lesson Presentation Lesson Quiz
Objective Use long division and synthetic division to divide polynomials.
Dividing Polynomials 6-3 Warm Up Lesson Presentation Lesson Quiz
Dividing Polynomials 6-3 Warm Up Lesson Presentation Lesson Quiz
Dividing Polynomials 3-3 Warm Up Lesson Presentation Lesson Quiz
Dividing Polynomials 6-3 Warm Up Lesson Presentation Lesson Quiz
You can use synthetic division to evaluate polynomials
Dividing Polynomials 6-3 Warm Up Lesson Presentation Lesson Quiz
Warm up.
2.5 Apply the Remainder and Factor Theorem
Warm Up.
Dividing Polynomials 6-3 Warm Up Lesson Presentation Lesson Quiz
Divide using long division
Warm Up Honors Algebra 2 11/3/17
Presentation transcript:

Warm Up Divide using long division. 1. 161 ÷ 7 23 2. 12.18 ÷ 2.1 5.8 6x – 15y 3 3. 2x + 5y 7a2 – ab a 4. 7a – b

Objective Use long division and synthetic division to divide polynomials.

Vocabulary synthetic division

Polynomial long division is a method for dividing a polynomial by another polynomials of a lower degree. It is very similar to dividing numbers.

Example 1: Using Long Division to Divide a Polynomial Divide using long division. (–y2 + 2y3 + 25) ÷ (y – 3) Step 1 Write the dividend in standard form, including terms with a coefficient of 0. 2y3 – y2 + 0y + 25 Step 2 Write division in the same way you would when dividing numbers. y – 3 2y3 – y2 + 0y + 25

Example 1 Continued Step 3 Divide. Step 4 Write the final answer. –y2 + 2y3 + 25 y – 3 2y2 –(2y3 – 6y2) + 5y –(5y2 – 15y) 15y + 25 –(15y – 45) 70 + 15 y – 3 2y3 – y2 + 0y + 25 = 2y2 + 5y + 15 + 5y2 + 0y 70

Huddle Divide using long division. (15x2 + 8x – 12) ÷ (3x + 1) Step 1 Write the dividend in standard form, including terms with a coefficient of 0. 15x2 + 8x – 12 Step 2 Write division in the same way you would when dividing numbers. 3x + 1 15x2 + 8x – 12

Huddle Step 3 Divide. 5x + 1 3x + 1 15x2 + 8x – 12 –(15x2 + 5x) 3x – 12 –(3x + 1) Step 4 Write the final answer. –13 = 5x + 1 – 13 3x + 1

Mastery Divide using long division. (x2 + 5x – 28) ÷ (x – 3) Step 1 Write the dividend in standard form, including terms with a coefficient of 0. x2 + 5x – 28 Step 2 Write division in the same way you would when dividing numbers. x – 3 x2 + 5x – 28

Mastery Step 3 Divide. x + 8 x – 3 x2 + 5x – 28 –(x2 – 3x) 8x – 28 Step 4 Write the final answer. –(8x – 24) = x + 8 – 4 x – 3 –4

Synthetic division is a shorthand method of dividing a polynomial by a linear binomial by using only the coefficients. For synthetic division to work, the polynomial must be written in standard form, using 0 and a coefficient for any missing terms, and the divisor must be in the form (x – a).

Example 2A: Using Synthetic Division to Divide by a Linear Binomial Divide using synthetic division. 1 3 (3x2 + 9x – 2) ÷ (x – ) Step 1 Find a. Then write the coefficients and a in the synthetic division format. 1 3 a = For (x – ), a = . 1 3 1 3 3 9 –2 Write the coefficients of 3x2 + 9x – 2.

Example 2A Continued Step 2 Bring down the first coefficient. Then multiply and add for each column. 1 3 3 9 –2 1 3 Draw a box around the remainder, 1 . 1 3 1 1 3 3 10 Step 3 Write the quotient. 3x + 10 + 1 3 x –

Example 2B: Using Synthetic Division to Divide by a Linear Binomial Divide using synthetic division. (3x4 – x3 + 5x – 1) ÷ (x + 2) Step 1 Find a. a = –2 For (x + 2), a = –2. Step 2 Write the coefficients and a in the synthetic division format. 3 – 1 0 5 –1 –2 Use 0 for the coefficient of x2.

Example 2B Continued Step 3 Bring down the first coefficient. Then multiply and add for each column. –2 3 –1 0 5 –1 Draw a box around the remainder, 45. –6 14 –28 46 3 –7 14 –23 45 Step 4 Write the quotient. 3x3 – 7x2 + 14x – 23 + 45 x + 2 Write the remainder over the divisor.

Huddle Divide using synthetic division. (6x2 – 5x – 6) ÷ (x + 3) Step 1 Find a. 6 –5 –6 –3 –18 6 63 –23 69 a = –3 6x – 23 + 63 x + 3

Mastery Divide using synthetic division. (x2 – 3x – 18) ÷ (x – 6) Step 1 Find a. 1 –3 –18 6 1 18 3 a = 6 x + 3

You can use synthetic division to evaluate polynomials You can use synthetic division to evaluate polynomials. This process is called synthetic substitution. The process of synthetic substitution is exactly the same as the process of synthetic division, but the final answer is interpreted differently, as described by the Remainder Theorem.

Example 3A: Using Synthetic Substitution Use synthetic substitution to evaluate the polynomial for the given value. P(x) = 2x3 + 5x2 – x + 7 for x = 2. 2 2 5 –1 7 Write the coefficients of the dividend. Use a = 2. 4 18 34 2 9 17 41 P(2) = 41 Check Substitute 2 for x in P(x) = 2x3 + 5x2 – x + 7. P(2) = 2(2)3 + 5(2)2 – (2) + 7 P(2) = 41 

Example 3B: Using Synthetic Substitution Use synthetic substitution to evaluate the polynomial for the given value. 1 3 P(x) = 6x4 – 25x3 – 3x + 5 for x = – . – 1 3 6 –25 0 –3 5 Write the coefficients of the dividend. Use 0 for the coefficient of x2. Use a = . 1 3 –2 9 –3 2 6 –27 9 –6 7 P( ) = 7 1 3

Huddle Use synthetic substitution to evaluate the polynomial for the given value. P(x) = x3 + 3x2 + 4 for x = –3. –3 1 3 0 4 Write the coefficients of the dividend. Use 0 for the coefficient of x2 Use a = –3. –3 1 4 P(–3) = 4 Check Substitute –3 for x in P(x) = x3 + 3x2 + 4. P(–3) = (–3)3 + 3(–3)2 + 4 P(–3) = 4 

Mastery Use synthetic substitution to evaluate the polynomial for the given value. 1 5 P(x) = 5x2 + 9x + 3 for x = . 1 5 5 9 3 Write the coefficients of the dividend. Use a = . 1 5 1 2 5 10 5 P( ) = 5 1 5

Example 4: Geometry Application Write an expression that represents the area of the top face of a rectangular prism when the height is x + 2 and the volume of the prism is x3 – x2 – 6x. The volume V is related to the area A and the height h by the equation V = A  h. Rearranging for A gives A = . V h x3 – x2 – 6x x + 2 A(x) = Substitute. –2 1 –1 –6 0 Use synthetic division. The area of the face of the rectangular prism can be represented by A(x)= x2 – 3x. –2 6 1 –3

Huddle Write an expression for the length of a rectangle with width y – 9 and area y2 – 14y + 45. The area A is related to the width w and the length l by the equation A = l  w. y2 – 14y + 45 y – 9 l(x) = Substitute. 9 1 –14 45 Use synthetic division. 9 –45 1 –5 The length of the rectangle can be represented by l(x)= y – 5.

Lesson Quiz 1. Divide by using long division. (8x3 + 6x2 + 7) ÷ (x + 2) 8x2 – 10x + 20 – 33 x + 2 2. Divide by using synthetic division. (x3 – 3x + 5) ÷ (x + 2) x2 – 2x + 1 + 3 x + 2 3. Use synthetic substitution to evaluate P(x) = x3 + 3x2 – 6 for x = 5 and x = –1. 194; –4 4. Find an expression for the height of a parallelogram whose area is represented by 2x3 – x2 – 20x + 3 and whose base is represented by (x + 3). 2x2 – 7x + 1