AMANDA L. STEBER, MARIYAM FATIMA, CRISTÓBAL PÉREZ, and MELANIE SCHNELL

Slides:



Advertisements
Similar presentations
Laboratory Spectrum of the trans-gauche Conformer of Ethyl Formate Justin L. Neill, Matt T. Muckle, Daniel P. Zaleski, Brooks H. Pate Department of Chemistry,
Advertisements

CHIRPED-PULSE FOURIER-TRANSFORM MICROWAVE SPECTROSCOPY OF THE PROTOTYPICAL C-H…π INTERACTION: THE BENZENE…ACETYLENE WEAKLY BOUND DIMER Nathan W. Ulrich,
Direct Frequency Comb Spectroscopy for the Study of Molecular Dynamics in the Infrared Fingerprint Region Adam J. Fleisher, Bryce Bjork, Kevin C. Cossel,
Dual-Comb Spectroscopy of C2H2, CH4 and H2O over 1.0 – 1.7 μm
Techniques for High-Bandwidth (> 30 GHz) Chirped-Pulse Millimeter/Submillimeter Spectroscopy Justin L. Neill, Amanda L. Steber, Brent J. Harris, Brooks.
CHIRPED-PULSE TERAHERTZ SPECTROSCOPY FOR BROADBAND TRACE GAS SENSING
Gas Analysis by Fourier Transform Millimeter Wave Spectroscopy Brent J. Harris, Amanda L. Steber, Kevin K. Lehmann, and Brooks H. Pate Department of Chemistry.
D.L. KOKKIN, N.J. REILLY, J.A. JOESTER, M. NAKAJIMA, K. NAUTA, S.H. KABLE and T.W. SCHMIDT Direct Observation of the c State of C 2 School of Chemistry,
The Search is Over: Design and Applications of a Chirped Pulse Fourier Transform Microwave (CP- FTMW) Spectrometer for Ground State Rotational Spectroscopy.
Introduction to Wireless Communications. Wireless Comes of Age Guglielmo Marconi invented the wireless telegraph in 1896 Communication by encoding alphanumeric.
A Segmented Chirped-Pulse Fourier Transform Millimeter Wave Spectrometer ( GHz) with Real-time Signal Averaging Capability Brent J. Harris, Amanda.
Tough Engineering Challenges Radar -Phase noise degrades sensitivity -Need to simulate range of return signals RF/Microwave Comms Systems -Higher order.
DELIVERING MICROWAVE SPECTROSCOPY TO THE MASSES: A DESIGN OF A LOW-COST MICROWAVE SPECTROMETER OPERATING IN THE GHZ FREQUENCY RANGE Amanda L. Steber.
Construction of a 480 MHz Chirped-Pulse Fourier-Transform Microwave Spectrometer: The Rotational Spectra of Divinyl Silane and 3,3-Difluoropentane Daniel.
Chirped Pulse Fourier Transform Microwave Spectroscopy of SnCl Garry S. Grubbs II and Stephen A. Cooke Department of Chemistry, University of North Texas,
Microwave Spectroscopy of Seven Conformers of 1,2-Propanediol Justin L. Neill, Matt T. Muckle, and Brooks H. Pate, Department of Chemistry, University.
OSU 06/19/08 Ultrabroadband Rotational Spectroscopy: Novel Applications of a Shape Sensitive Detector BRIAN C. DIAN Purdue University Department of Chemistry.
Two-Dimensional Chirped-Pulse Fourier Transform Microwave Spectroscopy Amanda Shirar June 22, th OSU International Symposium on Molecular Spectroscopy.
Chirped-Pulse Fourier Transform mm-Wave Spectroscopy from GHz Brent J. Harris, Amanda L. Steber, Justin L. Neill *, Brooks H. Pate University of.
Strategies for Complex Mixture Analysis in Broadband Microwave Spectroscopy Amanda L. Steber, Justin L. Neill, Matt T. Muckle, and Brooks H. Pate Department.
Tunable Mid-IR Frequency Comb for Molecular Spectroscopy
Spectral taxonomy: A semi-automated combination of chirped- pulse and cavity Fourier transform microwave spectroscopy Kyle N. Crabtree, Marie A. Martin-Drumel,
ULTRAVIOLET - CHIRPED PULSE FOURIER TRANSFORM MICROWAVE (UV-CPFTMW) DOUBLE-RESONANCE SPECTROSCOPY Brian C. Dian, Kevin O. Douglass, Gordon G. Brown, Jason.
Gas Phase Conformational Distributions
DANIEL P. ZALESKI, JUSTIN L. NEILL, MATTHEW T. MUCKLE, AMANDA L. STEBER, NATHAN A. SEIFERT, AND BROOKS H. PATE Department of Chemistry, University of Virginia,
__–––– Sensitivity Scaling of Dual Frequency Combs Ian Coddington, Esther Baumann, Fabrizio Giorgetta, William Swann, Nate Newbury NIST, Boulder, CO
Daniel P. Zaleski, Hansjochen Köckert, Susanna L. Stephens, Nick R. Walker School of Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne,
Novel Applications of a Shape Sensitive Detector 2: Double Resonance Amanda Shirar Purdue University Molecular Spectroscopy Symposium June 19, 2008.
Chirped-pulse, FTMW spectroscopy of the lactic acid-H 2 O system Zbigniew Kisiel, a Ewa Białkowska-Jaworska, a Daniel P. Zaleski, b Justin L. Neill, b.
Broadband Mid-infrared Comb-Resolved Fourier Transform Spectroscopy Kevin F. Lee A. Mills, C. Mohr, Jie Jiang, Martin E. Fermann P. Masłowski.
Pulse Shaping with MIIPS SASS 8/22/2012 David Nicholson.
CONFORMATIONS AND BARRIERS TO METHYL GROUP INTERNAL ROTATION IN TWO ASYMMETRIC ETHERS: PROPYL METHYL ETHER AND BUTYL METHYL ETHER. TC-06: June 19 th, 2012.
Amanda L. Steber, Brent J. Harris, Justin L. Neill, Kevin K. Lehmann, Brooks H. Pate Department of Chemistry, University of Virginia, McCormick Rd., P.O.
Molecular Stark Effect Measurements in Broadband Chirped-Pulse Fourier Transform Microwave (CP-FTMW) Spectrometers Leonardo Alvarez-Valtierra, 1 Steven.
Rotationally-Resolved Infrared Spectroscopy of the ν 16 Band of 1,3,5- Trioxane Bradley M. Gibson, Nicole C. Koeppen Department of Chemistry, University.
Enantiomer Identification in Chiral Mixtures with Broadband Microwave Spectroscopy V. Alvin Shubert a, David Schmitz a, Chris Medcraft a, Anna Krin a,
Perfluorobutyric acid and its monohydrate: a chirped pulse and cavity based Fourier transform microwave spectroscopic study Javix Thomas a, Agapito Serrato.
High Precision Infrared Spectroscopy of OH + Charles R. Markus, Adam J. Perry, James N. Hodges, G. Stephen Kocheril, Paul A. Jenkins II, Benjamin J. McCall.
NEW INSTRUMENTAL TOOLS FOR ADVANCED ASTROCHEMICAL APPLICATIONS Amanda L. Steber 1,2, Sabrina Zinn 1,2, Anouk Rijs 3, and Melanie Schnell 1,2 1 The Centre.
Fast Sweeping Direct Absorption (sub)Millimeter Spectroscopy Based on Chirped Pulse Technology Brian Hays 1, Steve Shipman 2, Susanna Widicus Weaver 1.
Infrared--Microwave Double Resonance Spectroscopy of Ar-DF (v = 0,1,2) Justin L. Neill, Gordon G. Brown, and Brooks H. Pate University of Virginia Department.
Nicholas R. Walker, David Hird, Anthony C. Legon 1 68 th International Symposium on Molecular Spectroscopy, Ohio State University, Broadband Rotational.
Fast Sweeping Double Resonance Microwave - (sub)Millimeter Spectrometer Based on Chirped Pulse Technology Brian Hays 1, Susanna Widicus Weaver 1, Steve.
Chirped-Pulse Microwave Spectroscopy in the Undergraduate Chemistry Curriculum Sydney Gaster, Taylor Hall, Sean Arnold, Deondre Parks, Gordon Brown Department.
Quantum Optics meets Astrophysics Frequency Combs for High Precision Spectroscopy in Astronomy T. Wilken, T. Steinmetz, R. Probst T.W. Hänsch, R. Holzwarth,
Digital Control System for Microwave Spectroscopy Data Collection Amanda Olmut Dr. Stephen Kukolich, Principle Investigator Dr. Adam Daly, Project Lead.
SEEING IS BELIEVING: An 11 GHz molecular beam rotational spectrum (7.5 – 18.5 GHz) with 100 kHz resolution in 15  s measurement time Brian C. Dian, Kevin.
Steven T. Shipman, 1 Leonardo Alvarez-Valtierra, 1 Justin L. Neill, 1 Brooks H. Pate, 1 Alberto Lesarri, 2 and Zbigniew Kisiel 3 Design and performance.
Nathan Seifert, Wolfgang Jäger University of Alberta
CRISTOBAL PEREZ, MARINA SEKUTOR, ANDREY A
Max Planck Institute for the Structure and Dynamics of Matter
Rebecca A. Peebles,a Prashansa B. Kannangara,a Brooks H
A Chirped Pulse Fourier Transform Microwave (CP-FTMW) Spectrometer with Laser Ablation Source to Search for Actinide-Containing Molecules and Noble Metal.
72nd International Symposium on Molecular Spectroscopy (ISMS 2017)
Multiplexed saturation spectroscopy with electro-optic frequency combs
International Symposium on Molecular Spectroscopy, 71st Meeting
Characterisation and Control of Cold Chiral Compounds
MARIYAM FATIMA 1,2,3, CRISTÓBAL PÉREZ1,2,3 , MELANIE SCHNELL 1,2,3
Frequency Band Performance Comparisons for Room-Temperature Chirped Pulse Millimeter Wave Spectroscopy Justin L. Neill, Brent J. Harris, Robin L. Pulliam,
Direct Digital Synthesis: Applications to Radar
University of Arizona, Dept. of Physics
CHIRPED-PULSE FOURIER TRANSFORM MICROWAVE SPECTROSCOPY OF
CHIRALITY DETERMINATION FROM PULSED-JET FOURIER TRANSFORM
THE STRUCTURE OF PHENYLGLYCINOL
THE STUDY OF ACENAPHTHENE AND ITS COMPLEXATION WITH WATER
Modularity In Design for Microwave Spectroscopy Equipment
BROADBAND MICROWAVE SPECTROSCOPY AS A TOOL TO STUDY DISPERSION INTERACTIONS IN CAMPHOR-ALCOHOL SYSTEMS MARIYAM FATIMA, CRISTÓBAL PÉREZ, MELANIE SCHNELL,
10.6 Fourier Transform Mass Spectrometry
Noise Aperiodic complex wave
Precision Control Optical Pulse Train
Presentation transcript:

AMANDA L. STEBER, MARIYAM FATIMA, CRISTÓBAL PÉREZ, and MELANIE SCHNELL AN 18-26 GHz SEGMENTED CHIRPED PULSE FOURIER TRANSFORM MICROWAVE SPECTROMETER FOR ASTROCHEMICAL APPLICATIONS AMANDA L. STEBER, MARIYAM FATIMA, CRISTÓBAL PÉREZ, and MELANIE SCHNELL Styling: MPSD color: 44-89-160

Introduction Chirped pulse Fourier transform microwave spectroscopy Increased data throughput Used in both a large and small bandwidth configuration Segmented Chirped pulse Introduced in 2013 Used at mmw frequencies Utilizes lower cost components Introduces real time averaging Goals: Decrease the cost Decrease acquisition times G.G. Brown et al., J. Mol. Spectro, 238, 200 (2006) J.L. Neill et al., Opt. Express, 21, 19743 (2013)

Instrumentation N.A. Seifert et al., J. Mol. Spectro., 312, 13 (2015)

Instrumentation

Segmented, Fast Frame Chirped Pulse Divide 8 GHz bandwidth into 10 – 800 MHz segments Pulse train Depending upon the pumping speed you can fit multiple segments into one gas pulse

Phase Stability We are able to collect the pulses (that have been heavily attenuated by the switch)

Phase stability

OCS / Sensitivity 0.2 % OCS in Neon 3 bar backing pressure 200,000 averages 18O13CS SNR ~3:1 0.0021 % Not intensity calibrated

1-Hexanal 0.2% 1-Hexanal in Neon 1 bar backing pressure 1 nozzle

1-Hexanal N.A. Seifert et al., J. Mol. Spectro., 312, 13 (2015)

Spurious Signals Generated from the local oscillator Occur ~200 MHz 2M average spectrum

1-Hexanal Spurious SIgnals N.A. Seifert et al., J. Mol. Spectro., 312, 13 (2015)

Comparison between two approaches Broadband Segmented Effective Rep Rate 30 Hz 15 Hz Power/GHz 5 W/GHz 5-7 W/GHz Bandwidth 8 GHz /segment 800 MHz/segment Nozzles 3 1 Pulse Duration 1 ms 2 ms FID duration 10 ms LNA 48 dBm 45 dBm ~ Cost ~350,000 € ~150,000 € SNR of conformer 1 of 1-Hexanal 3500:1 ~1300:1

Astrochemistry Applications Broadband reaction screening Based on the work done at Uva Discharge nozzle Paired with the W-band instrument Astrochemically relevant molecules Alaninol Isoleucinol M.C. McCarthy et al., Astrophys. J. Suppl. Ser., 129, 129 (2000) D.P. Zaleski et al., Astrophys. J. Lett., 765, L10 (2013) R. A. Loomis et al., Astrophys. J. Lett., 765, L9 (2013)

Conclusions and Future Directions A new segmented, fast frame chirped pulse spectrometer has been built Potential to reduce time Reduces cost Future Directions Intensity calibration needs to be improved Spurious signals better cateloged Pumping speed improved

Acknowledgement ERC 638027 Louise Johnson Fellowship

Power Curve Power loss across electronics Frequency Dependent

1-Hexanal N.A. Seifert et al., J. Mol. Spectro., 312, 13 (2015)