Relational Calculus Chapter 4, Section 4.3.

Slides:



Advertisements
Similar presentations
Relational Algebra Chapter 4, Part A
Advertisements

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 Relational Calculus Chapter 4, Part B.
Relational Calculus   Logic, like whiskey, loses its beneficial effect when taken in too large quantities. --Lord Dunsany.
1 TRC vs DRC 한욱신. 2 Queries in TRC and DRC  TRC Q = {t| f(t)} where t is a (free) tuple variable and f(t) is a well-formed formula  DRC.
1 541: Relational Calculus. 2 Relational Calculus  Comes in two flavours: Tuple relational calculus (TRC) and Domain relational calculus (DRC).  Calculus.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 Relational Algebra Chapter 4, Part A Modified by Donghui Zhang.
1 Relational Calculus Chapter 4 – Part II. 2 Formal Relational Query Languages  Two mathematical Query Languages form the basis for “real” languages.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 Relational Algebra Chapter 4.
Relational Algebra Content based on Chapter 4 Database Management Systems, (Third Edition), by Raghu Ramakrishnan and Johannes Gehrke. McGraw Hill, 2003.
1 Relational Algebra & Calculus. 2 Relational Query Languages  Query languages: Allow manipulation and retrieval of data from a database.  Relational.
CMPT 354, Simon Fraser University, Fall 2008, Martin Ester 52 Database Systems I Relational Algebra.
R ELATIONAL A LGEBRA M ORE POINTERS FROM T UESDAY.
Relational Calculus. Another Theoretical QL-Relational Calculus n Comes in two flavors: Tuple relational calculus (TRC) and Domain relational calculus.
1 Lecture 5: Relational calculus
Relational Calculus CS 186, Spring 2007, Lecture 6 R&G, Chapter 4 Mary Roth   We will occasionally use this arrow notation unless there is danger of.
SPRING 2004CENG 3521 E-R Diagram for the Banking Enterprise.
Introduction to Database Systems 1 Relational Algebra Relational Model: Topic 3.
1 SQL: Structured Query Language Chapter 5. 2 SQL and Relational Calculus relationalcalculusAlthough relational algebra is useful in the analysis of query.
1 Relational Algebra and Calculus Yanlei Diao UMass Amherst Feb 1, 2007 Slides Courtesy of R. Ramakrishnan and J. Gehrke.
Relational Calculus R&G, Chapter 4   We will occasionally use this arrow notation unless there is danger of no confusion. Ronald Graham Elements of Ramsey.
Introduction to Database Systems 1 Relational Calculus Relational Model : Topic 2.
Relational Algebra Chapter 4 - part I. 2 Relational Query Languages  Query languages: Allow manipulation and retrieval of data from a database.  Relational.
Relational Calculus CS 186, Fall 2003, Lecture 6 R&G, Chapter 4   We will occasionally use this arrow notation unless there is danger of no confusion.
Rutgers University Relational Calculus 198:541 Rutgers University.
1 Relational Algebra and Calculus Chapter 4. 2 Relational Query Languages  Query languages: Allow manipulation and retrieval of data from a database.
The Relational Model: Relational Calculus
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 Relational Calculus Chapter 4, Section 4.3.
Database Management Systems, R. Ramakrishnan1 Relational Calculus Chapter 4.
1 Relational Algebra. 2 Relational Query Languages v Query languages: Allow manipulation and retrieval of data from a database. v Relational model supports.
Database Management Systems,1 Relational Calculus.
Relational Calculus. Non Procedural or Declarative Calculus has variables, constants, comparison ops, logical connectives and quantifiers. There are TWO.
Relational Calculus R&G, Chapter 4. Relational Calculus Comes in two flavors: Tuple relational calculus (TRC) and Domain relational calculus (DRC). Calculus.
Relational Calculus CS 186, Spring 2005, Lecture 9 R&G, Chapter 4   We will occasionally use this arrow notation unless there is danger of no confusion.
1 Relational Algebra & Calculus Chapter 4, Part A (Relational Algebra)
1 Relational Algebra and Calculas Chapter 4, Part A.
Relational Algebra.
1 Relational Algebra Chapter 4, Sections 4.1 – 4.2.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 Database Management Systems Chapter 4 Relational Algebra.
IST 210 The Relational Language Todd S. Bacastow January 2004.
Database Management Systems, R. Ramakrishnan1 Relational Algebra Module 3, Lecture 1.
1 Copyright © Kyu-Young Whang Relational Calculus Chapter 4, Part B.
Copyright © Curt Hill The Relational Calculus Another way to do queries.
CSC 411/511: DBMS Design Dr. Nan WangCSC411_L5_Relational Calculus 1 Relational Calculus Chapter 4 – Part B.
Relational Calculus Jianlin Feng School of Software SUN YAT-SEN UNIVERSITY courtesy of Joe Hellerstein for some slides.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 Relational Algebra Chapter 4.
Database Management Systems, R. Ramakrishnan1 Relational Calculus Chapter 4, Part B.
1 Relational Calculus ♦ Comes in two flavors: Tuple relational calculus (TRC) and Domain relational calculus (DRC). ♦ Calculus has variables, constants,
1 Relational Algebra. 2 Relational Query Languages  Query languages: Allow manipulation and retrieval of data from a database.  Relational model supports.
Relational Calculus Database Management Systems, 3rd ed., Ramakrishnan and Gehrke, Chapter 4.
Chapter 8 Relational Calculus.
Relational Algebra & Calculus
A First Course in Database Systems
Relational Calculus Chapter 4, Part B
Chapter 6: Formal Relational Query Languages
Relational Algebra 461 The slides for this text are organized into chapters. This lecture covers relational algebra, from Chapter 4. The relational calculus.
CS 186, Spring 2007, Lecture 6 R&G, Chapter 4 Mary Roth
Relational Algebra.
Lecture#5: Relational calculus
Relational Calculus.
Chapter 6: Formal Relational Query Languages
Relational Algebra Chapter 4, Sections 4.1 – 4.2
Relational Calculus and QBE
CS 186, Fall 2002, Lecture 8 R&G, Chapter 4
Relational Calculus and QBE
Chapter 6: Formal Relational Query Languages
CS 186, Spring 2007, Lecture 6 R&G, Chapter 4 Mary Roth
Relational Algebra & Calculus
Relational Calculus Chapter 4, Part B 7/1/2019.
Relational Calculus Chapter 4 – Part II.
Relational Calculus Chapter 4, Part B
Presentation transcript:

Relational Calculus Chapter 4, Section 4.3

Relational Calculus Has two flavors: Tuple relational calculus (TRC) Domain relational calculus (DRC). Has variables, constants, comparison ops, logical connectives, and quantifiers. TRC: Variables range over (i.e., get bound to) tuples. DRC: Variables range over domain elements (= field values). Both TRC and DRC are simple subsets of first-order logic. Expressions in the calculus are called formulas. An answer tuple is essentially an assignment of constants to variables that make the formula evaluate to true.

Tuple Relational Calculus Query has the form: Answer includes all tuples t that make the formula p(t) be true. Formula is recursively defined, starting with simple atomic formulas (getting tuples from relations or making comparisons of values), and building bigger formulas using the logical connectives.

TRC Formulas Atomic formula: Formula: an atomic formula, or , or R.a op S.b, or R.a op constant op is one of Formula: an atomic formula, or , where p and q are formulas, or , where variable R is free in p(R), or , where variable R is free in p(R) The use of quantifiers and is said to bind R. A variable that is not bound is free.

Free and Bound Variables The use of quantifiers and in a formula is said to bind R. A variable that is not bound is free. Let us revisit the definition of a query: There is an important restriction: the variable t that appears to the left of `|’ must be the only free variable in the formula p(...).

Domain Relational Calculus Query has the form: Answer includes all tuples that make the formula be true. Formula is recursively defined, similarly to TRC.

DRC Formulas Atomic formula: Formula: an atomic formula, or , or X op Y, or X op constant op is one of Formula: an atomic formula, or , where p and q are formulas, or , where variable X is free in p(X), or , where variable X is free in p(X) The use of quantifiers and is said to bind X. A variable that is not bound is free.

Free and Bound Variables The use of quantifiers and in a formula is said to bind X. A variable that is not bound is free. Let us revisit the definition of a query: Important restriction: the variables x1, ..., xn that appear to the left of `|’ must be the only free variables in the formula p(...).

Find all sailors with a rating above 7 The condition ensures that the domain variables I, N, T and A are bound to fields of the same Sailors tuple. The term to the left of `|’ (which should be read as such that) says that every tuple that satisfies T>7 is in the answer. Modify this query to answer: Find sailors who are older than 18 or have a rating under 9, and are called ‘Joe’.

Find sailors rated > 7 who have reserved boat #103 We have used as a shorthand for Note the use of to find a tuple in Reserves that `joins with’ the Sailors tuple under consideration.

Find sailors rated > 7 who’ve reserved a red boat Observe how the parentheses control the scope of each quantifier’s binding. This may look cumbersome, but with a good user interface, it is very intuitive. (MS Access, QBE)

Find sailors who’ve reserved all boats Find all sailors I such that for each 3-tuple either it is not a tuple in Boats or there is a tuple in Reserves showing that sailor I has reserved it.

Find sailors who’ve reserved all boats (again!) This is the same query, but using a simpler notation. To find sailors who’ve reserved all red boats, use: .....

Unsafe Queries, Expressive Power It is possible to write syntactically correct calculus queries that have an infinite number of answers! Such queries are called unsafe. e.g., It is known that every query that can be expressed in relational algebra can be expressed as a safe query in DRC / TRC; the converse is also true. Relational Completeness: Query language (e.g., SQL) can express every query that is expressible in relational algebra/calculus.

Summary Relational calculus is non-operational, and users define queries in terms of what they want, not in terms of how to compute it. (Declarativeness.) Algebra and safe calculus have same expressive power, leading to the notion of relational completeness. Examples given were all in DRC; easy to adapt them to TRC.