Merge Sort 1/12/2018 5:48 AM Merge Sort 7 2   7  2  2 7

Slides:



Advertisements
Similar presentations
AVL Trees1 Part-F2 AVL Trees v z. AVL Trees2 AVL Tree Definition (§ 9.2) AVL trees are balanced. An AVL Tree is a binary search tree such that.
Advertisements

Red-Black Trees 二○一七年四月十二日 AVL Trees v z AVL Trees.
© 2004 Goodrich, Tamassia Merge Sort1 7 2  9 4   2  2 79  4   72  29  94  4.
© 2004 Goodrich, Tamassia Merge Sort1 7 2  9 4   2  2 79  4   72  29  94  4.
Data Structures Lecture 9 Fang Yu Department of Management Information Systems National Chengchi University Fall 2010.
CSCE 3110 Data Structures & Algorithm Analysis
1 Merge Sort Review of Sorting Merge Sort. 2 Sorting Algorithms Selection Sort uses a priority queue P implemented with an unsorted sequence: –Phase 1:
Merge Sort 7 2  9 4   2  2 79  4   72  29  94  4.
Merge Sort 4/15/2017 4:30 PM Merge Sort 7 2   7  2  2 7
Merge Sort1 Part-G1 Merge Sort 7 2  9 4   2  2 79  4   72  29  94  4.
Merge Sort1 7 2  9 4   2  2 79  4   72  29  94  4.
Insertion Sort. Selection Sort. Bubble Sort. Heap Sort. Merge-sort. Quick-sort. 2 CPSC 3200 University of Tennessee at Chattanooga – Summer 2013 © 2010.
CSC2100B Quick Sort and Merge Sort Xin 1. Quick Sort Efficient sorting algorithm Example of Divide and Conquer algorithm Two phases ◦ Partition phase.
© 2004 Goodrich, Tamassia Quick-Sort     29  9.
© 2004 Goodrich, Tamassia QuickSort1 Quick-Sort     29  9.
Quick-Sort     29  9.
© 2004 Goodrich, Tamassia Quick-Sort     29  9.
Divide-and-Conquer1 7 2  9 4   2  2 79  4   72  29  94  4.
Divide-and-Conquer1 7 2  9 4   2  2 79  4   72  29  94  4.
© 2004 Goodrich, Tamassia Merge Sort1 Quick-Sort     29  9.
Divide-and-Conquer1 7 2  9 4   2  2 79  4   72  29  94  4 Modified by: Daniel Gomez-Prado, University of Massachusetts Amherst.
MergeSort Source: Gibbs & Tamassia. 2 MergeSort MergeSort is a divide and conquer method of sorting.
Chapter 3: Recursive Algorithms
Parallel Processing (CS526) Spring 2012(Week 5).  There are no rules, only intuition, experience and imagination!  We consider design techniques, particularly.
Sorting.
Divide-and-Conquer 7 2  9 4   2   4   7
CSCE 3110 Data Structures & Algorithm Analysis Sorting (I) Reading: Chap.7, Weiss.
Divide-and-Conquer1 7 2  9 4   2  2 79  4   72  29  94  4.
Lecture10: Sorting II Bohyung Han CSE, POSTECH CSED233: Data Structures (2014F)
Randomized Algorithms CSc 4520/6520 Design & Analysis of Algorithms Fall 2013 Slides adopted from Dmitri Kaznachey, George Mason University and Maciej.
Merge Sort Data Structures and Algorithms CS 244 Brent M. Dingle, Ph.D. Department of Mathematics, Statistics, and Computer Science University of Wisconsin.
© 2004 Goodrich, Tamassia Quick-Sort     29  9.
© 2004 Goodrich, Tamassia Merge Sort1 7 2  9 4   2  2 79  4   72  29  94  4.
1 Merge Sort 7 2  9 4   2  2 79  4   72  29  94  4.
Towers of Hanoi Move n (4) disks from pole A to pole B such that a larger disk is never put on a smaller disk A BC ABC.
QuickSort by Dr. Bun Yue Professor of Computer Science CSCI 3333 Data.
Advanced Sorting 7 2  9 4   2   4   7
Chapter 11 Sorting Acknowledgement: These slides are adapted from slides provided with Data Structures and Algorithms in C++, Goodrich, Tamassia and Mount.
Merge Sort 7 2  9 4   2   4   7 2  2 9  9 4  4.
Merge Sort 1/12/2018 9:39 AM Presentation for use with the textbook Data Structures and Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia,
Merge Sort 1/12/2018 9:44 AM Presentation for use with the textbook Data Structures and Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia,
Divide-and-Conquer 6/30/2018 9:16 AM
Quick Sort and Merge Sort
Quick-Sort 9/12/2018 3:26 PM Presentation for use with the textbook Data Structures and Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia,
Quick-Sort 9/13/2018 1:15 AM Quick-Sort     2
MergeSort Source: Gibbs & Tamassia.
More on Merge Sort CS 244 This presentation is not given in class
Radish-Sort 11/11/ :01 AM Quick-Sort     2 9  9
Objectives Introduce different known sorting algorithms
Merge Sort 12/4/ :32 AM Merge Sort 7 2   7  2   4  4 9
Divide-and-Conquer 7 2  9 4   2   4   7
Sorting, Sets and Selection
Merge Sort 2/23/ :15 PM Merge Sort 7 2   7  2   4  4 9
Merge Sort 2/24/2019 6:07 PM Merge Sort 7 2   7  2  2 7
Quick-Sort 2/25/2019 2:22 AM Quick-Sort     2
Copyright © Aiman Hanna All rights reserved
Copyright © Aiman Hanna All rights reserved
Quick-Sort 4/8/ :20 AM Quick-Sort     2 9  9
Divide-and-Conquer 7 2  9 4   2   4   7
Merge Sort 4/10/ :25 AM Merge Sort 7 2   7  2   4  4 9
Quick-Sort 4/25/2019 8:10 AM Quick-Sort     2
Divide & Conquer Sorting
CSCE 3110 Data Structures & Algorithm Analysis
CSCE 3110 Data Structures & Algorithm Analysis
Divide-and-Conquer 7 2  9 4   2   4   7
Merge Sort 5/30/2019 7:52 AM Merge Sort 7 2   7  2  2 7
CSCE 3110 Data Structures & Algorithm Analysis
CS203 Lecture 15.
Divide-and-Conquer 7 2  9 4   2   4   7
Presentation transcript:

Merge Sort 1/12/2018 5:48 AM Merge Sort 7 2  9 4  2 4 7 9 7  2  2 7 9  4  4 9 7  7 2  2 9  9 4  4 Merge Sort

Sorting Algorithms Selection-Sort The algorithm works as follows: Find the minimum value in the list Swap it with the value in the first position Repeat the steps above for the remainder of the list (starting at the second position and advancing each time) Merge Sort

Sorting Algorithms Insertion Sort The algorithm works as follows: becomes Sorting Algorithms Insertion Sort The algorithm works as follows: Every repetition of insertion sort removes an element from the input data, inserting it into the correct position in the already-sorted list, until no input elements remain. The choice of which element to remove from the input is arbitrary, and can be made using almost any choice algorithm. Merge Sort

Divide-and-Conquer (§ 10.1.1) Divide-and conquer is a general algorithm design paradigm: Divide: divide the input data S in two disjoint subsets S1 and S2 Recur: solve the subproblems associated with S1 and S2 Conquer: combine the solutions for S1 and S2 into a solution for S The base case for the recursion are subproblems of size 0 or 1 Merge-sort is a sorting algorithm based on the divide-and-conquer paradigm Like heap-sort It uses a comparator It has O(n log n) running time Unlike heap-sort It does not use an auxiliary priority queue It accesses data in a sequential manner (suitable to sort data on a disk) Merge Sort

Merge-Sort (§ 10.1) Merge-sort on an input sequence S with n elements consists of three steps: Divide: partition S into two sequences S1 and S2 of about n/2 elements each Recur: recursively sort S1 and S2 Conquer: merge S1 and S2 into a unique sorted sequence Algorithm mergeSort(S, C) Input sequence S with n elements, comparator C Output sequence S sorted according to C if S.size() > 1 (S1, S2)  partition(S, n/2) mergeSort(S1, C) mergeSort(S2, C) S  merge(S1, S2) Merge Sort

Merging Two Sorted Sequences The conquer step of merge-sort consists of merging two sorted sequences A and B into a sorted sequence S containing the union of the elements of A and B Merging two sorted sequences, each with n/2 elements and implemented by means of a doubly linked list, takes O(n) time Algorithm merge(A, B) Input sequences A and B with n/2 elements each Output sorted sequence of A  B S  empty sequence while A.isEmpty()  B.isEmpty() if A.first().element() < B.first().element() S.addLast(A.remove(A.first())) else S.addLast(B.remove(B.first())) while A.isEmpty() S.addLast(A.remove(A.first())) while B.isEmpty() S.addLast(B.remove(B.first())) return S Merge Sort

Merge-Sort Tree An execution of merge-sort is depicted by a binary tree each node represents a recursive call of merge-sort and stores unsorted sequence before the execution and its partition sorted sequence at the end of the execution the root is the initial call the leaves are calls on subsequences of size 0 or 1 7 2  9 4  2 4 7 9 7  2  2 7 9  4  4 9 7  7 2  2 9  9 4  4 Merge Sort

Execution Example Partition 7 2 9 4  3 8 6 1  1 2 3 4 6 7 8 9 7 2 9 4  3 8 6 1  1 2 3 4 6 7 8 9 7 2 9 4  2 4 7 9 3 8 6 1  1 3 8 6 7 2  2 7 9 4  4 9 3 8  3 8 6 1  1 6 7  7 2  2 9  9 4  4 3  3 8  8 6  6 1  1 Merge Sort

Execution Example (cont.) Recursive call, partition 7 2 9 4  3 8 6 1  1 2 3 4 6 7 8 9 7 2  9 4  2 4 7 9 3 8 6 1  1 3 8 6 7 2  2 7 9 4  4 9 3 8  3 8 6 1  1 6 7  7 2  2 9  9 4  4 3  3 8  8 6  6 1  1 Merge Sort

Execution Example (cont.) Recursive call, partition 7 2 9 4  3 8 6 1  1 2 3 4 6 7 8 9 7 2  9 4  2 4 7 9 3 8 6 1  1 3 8 6 7  2  2 7 9 4  4 9 3 8  3 8 6 1  1 6 7  7 2  2 9  9 4  4 3  3 8  8 6  6 1  1 Merge Sort

Execution Example (cont.) Recursive call, base case 7 2 9 4  3 8 6 1  1 2 3 4 6 7 8 9 7 2  9 4  2 4 7 9 3 8 6 1  1 3 8 6 7  2  2 7 9 4  4 9 3 8  3 8 6 1  1 6 7  7 2  2 9  9 4  4 3  3 8  8 6  6 1  1 Merge Sort

Execution Example (cont.) Recursive call, base case 7 2 9 4  3 8 6 1  1 2 3 4 6 7 8 9 7 2  9 4  2 4 7 9 3 8 6 1  1 3 8 6 7  2  2 7 9 4  4 9 3 8  3 8 6 1  1 6 7  7 2  2 9  9 4  4 3  3 8  8 6  6 1  1 Merge Sort

Execution Example (cont.) Merge 7 2 9 4  3 8 6 1  1 2 3 4 6 7 8 9 7 2  9 4  2 4 7 9 3 8 6 1  1 3 8 6 7  2  2 7 9 4  4 9 3 8  3 8 6 1  1 6 7  7 2  2 9  9 4  4 3  3 8  8 6  6 1  1 Merge Sort

Execution Example (cont.) Recursive call, …, base case, merge 7 2 9 4  3 8 6 1  1 2 3 4 6 7 8 9 7 2  9 4  2 4 7 9 3 8 6 1  1 3 8 6 7  2  2 7 9 4  4 9 3 8  3 8 6 1  1 6 7  7 2  2 9  9 4  4 3  3 8  8 6  6 1  1 Merge Sort

Execution Example (cont.) Merge 7 2 9 4  3 8 6 1  1 2 3 4 6 7 8 9 7 2  9 4  2 4 7 9 3 8 6 1  1 3 8 6 7  2  2 7 9 4  4 9 3 8  3 8 6 1  1 6 7  7 2  2 9  9 4  4 3  3 8  8 6  6 1  1 Merge Sort

Execution Example (cont.) Recursive call, …, merge, merge 7 2 9 4  3 8 6 1  1 2 3 4 6 7 8 9 7 2  9 4  2 4 7 9 3 8 6 1  1 3 6 8 7  2  2 7 9 4  4 9 3 8  3 8 6 1  1 6 7  7 2  2 9  9 4  4 3  3 8  8 6  6 1  1 Merge Sort

Execution Example (cont.) Merge 7 2 9 4  3 8 6 1  1 2 3 4 6 7 8 9 7 2  9 4  2 4 7 9 3 8 6 1  1 3 6 8 7  2  2 7 9 4  4 9 3 8  3 8 6 1  1 6 7  7 2  2 9  9 4  4 3  3 8  8 6  6 1  1 Merge Sort

Analysis of Merge-Sort The height h of the merge-sort tree is O(log n) at each recursive call we divide in half the sequence, The overall amount or work done at the nodes of depth i is O(n) we partition and merge 2i sequences of size n/2i we make 2i+1 recursive calls Thus, the total running time of merge-sort is O(n log n) depth #seqs size 1 n 2 n/2 i 2i n/2i … Merge Sort

Summary of Sorting Algorithms Time Notes selection-sort O(n2) slow in-place for small data sets (< 1K) insertion-sort heap-sort O(n log n) fast for large data sets (1K — 1M) merge-sort sequential data access for huge data sets (> 1M) Merge Sort