Three things necessary to do Work in Physics:

Slides:



Advertisements
Similar presentations
Physics: Principles with Applications, 6th edition
Advertisements

Work Work – when a force causes an object to move in the direction of that force. Work & Energy are scalar quantities. Joule (J) – SI unit for Work &
6-7 Problem Solving Using Conservation of Mechanical Energy
Work and Energy Chapter 6. Expectations After Chapter 6, students will:  understand and apply the definition of work.  solve problems involving kinetic.
Work and Kinetic Energy. Work Done by a Constant Force The definition of work, when the force is parallel to the displacement: (7-1) SI unit: newton-meter.
Work and Energy Definition of Work Kinetic Energy Potential Energy
Work and Energy. Work Done by a Constant Force Definition of Work: The work done by a constant force acting on an object is equal to the the displacement.
Chapter 7 Work and Kinetic Energy. Units of Chapter 7 Work Done by a Constant Force Kinetic Energy and the Work-Energy Theorem Work Done by a Variable.
Chapter 6 Work & Energy.
Chapter 6 Work and Energy.
Chapter 6 Work and Energy
© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
WORK In order for work to be done, three things are necessary:
Work and Energy Work done by a constant force Work-Energy Theorem and KE Gravitational Potential Energy Conservative Forces vs Non- conservative Forces.
Problem Solving Using Conservation of Mechanical Energy
Chapter 6 Work and Energy.
Ch 6 Work and Energy.
Chapter 10 Work and Energy
Chapter 5 Work and Energy. 6-1 Work Done by a Constant Force The work done by a constant force is defined as the distance moved multiplied by the component.
Energy m m Physics 2053 Lecture Notes Energy.
1 Physics for Scientists & Engineers, with Modern Physics, 4 th edition Giancoli Piri Reis University / Physics -I.
Mechanics Topic 2.3 Work, Energy and Power. Work A simple definition of work is the force multiplied by the distance moved However this does not take.
Chapters 6, 7 Energy.
Chapter 6 - Work and Kinetic Energy Learning Goals What it means for a force to do work on a body, and how to calculate the amount of work done. The definition.
Chapter 6 Work and Energy. Units of Chapter 6 Work Done by a Constant Force Work Done by a Varying Force Kinetic Energy, and the Work-Energy Principle.
Energy Work Kinetic Energy & Work-Energy Theorem Gravitational Potential Energy.
Chapter 6 Work and Energy. Units of Chapter 6 Work Done by a Constant Force Kinetic Energy, and the Work-Energy Principle Potential Energy Conservative.
Work & Energy Chapters 7-8 Work Potential Energy Kinetic Energy Conservation of Mechanical Energy.
Work and Energy.
© 2010 Pearson Education, Inc. Lecture Outline Chapter 5 College Physics, 7 th Edition Wilson / Buffa / Lou.
Work and Energy. Work Done by a Constant Force The work done by a constant force is defined as the distance moved multiplied by the component of the force.
Energy. Analyzing the motion of an object can often get to be very complicated and tedious – requiring detailed knowledge of the path, frictional forces,
Work and Energy.
Chapter 6: Work and Energy Essential Concepts and Summary.
Chapters 7, 8 Energy. What is energy? Energy - is a fundamental, basic notion in physics Energy is a scalar, describing state of an object or a system.
Work and Energy. Scalar (Dot) Product When two vectors are multiplied together a scalar is the result:
Work Readings: Chapter 11.
Conservation of Energy
Chapter 5 Energy. Forms of Energy Mechanical Focus for now May be kinetic (associated with motion) or potential (associated with position) Chemical Electromagnetic.
Chapter 5 Work and Energy. Mechanical Energy  Mechanical Energy is the energy that an object has due to its motion or its position.  Two kinds of mechanical.
Work The work done on an object by a constant force is given by: Units: Joule (J) The net work done on an object is the sum of all the individual “works”
© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
Copyright © 2010 Pearson Education, Inc. Lecture Outline Chapter 7 Physics, 4 th Edition James S. Walker.
WORK AND ENERGY 3 WORK Work is done when an object is moved through a distance. It is defined as the product of the component of force applied along.
Work Done by a Constant Force The work done by a constant force is defined as the distance moved multiplied by the component of the force in the direction.
Energy Notes Energy is one of the most important concepts in science. An object has energy if it can produce a change in itself or in its surroundings.
Chapter 6 Work and Energy © 2014 Pearson Education, Inc. No need to write information in red.
Kinetic energy exists whenever an object which has mass is in motion with some velocity. Everything you see moving about has kinetic energy. The kinetic.
Work and Energy. Work Done by a Constant Force The work done by a constant force is defined as the distance moved multiplied by the component of the force.
© 2010 Pearson Education, Inc. Lecture Outline Chapter 5 College Physics, 7 th Edition Wilson / Buffa / Lou.
PHY 102: Lecture 4A 4.1 Work/Energy Review 4.2 Electric Potential Energy.
Chapter 6 Work and Energy.
Topic VII Work and Energy
Topic VII Work and Energy
Chapter 6 Work and Energy
Work and Energy Chapter 6.
Chapter 6 Work and Energy.
AP Physics 1 Review Session 2
Chapter 6 Work and Energy
Chapter 6 Work and Energy.
Chapter 6 Work and Energy
Lecture Outline Chapter 7 Physics, 4th Edition James S. Walker
Physics: Principles with Applications, 6th edition
Chapter 13 Work and Energy.
Physics: Principles with Applications, 6th edition
Physics: Principles with Applications, 6th edition
Chapter 6 Work and Energy
Work and Energy Chapter 6 Lesson 1
Physics: Principles with Applications, 6th edition
Presentation transcript:

Three things necessary to do Work in Physics: There must be an applied force F. There must be a change in displacement x (velocity). The force must have a component along the displacement (or velocity). F q x

If a force does not affect displacement, it does no work. The force F exerted on the pot by the man does work. F W The earth exerts a force W on pot, but does no work even though there is displacement.

Work = Force component X displacement Definition of Work Work is a scalar quantity equal to the product of the displacement x and the component of the force Fx in the direction of the displacement. Work = Force component X displacement Work = Fx x

Positive Work F x Force F contributes to displacement x. Example: If F = 40 N and x = 4 m, then Work = (40 N)(4 m) = 160 Nm Work = 160 J 1 Nm = 1 Joule (J)

Negative Work x f The friction force f opposes the displacement. Example: If f = -10 N and x = 4 m, then Work = (-10 N)(4 m) = - 40 J Work = - 40 J

Resultant Work or Net Work Resultant work is the algebraic sum of the individual works of each force. F x f Example: F = 40 N, f = -10 N and x = 4 m Work = (40 N)(4 m) + (-10 N)(4 m) Work = 120 J

Work of a Force at an Angle x = 12 m F = 70 N 60o Work = Fx x Work = (F cos ) x Work = (70 N) Cos 600 (12 m) = 420 J Only the x-component of the force does work! Work = 420 J

Work Done by a Varying Force For a force that varies, work done is the area under the force vs. distance curve.

Work and Kinetic Energy A resultant force changes the velocity of an object and does work on that object. m vo vf x F

The Work-Energy Theorem Work is equal to the change in ½mv2 If we define kinetic energy as ½mv2 then we can state a very important physical principle: The Work-Energy Theorem: The work done by a resultant force is equal to the change in kinetic energy that it produces.

Problem Solving Using Conservation of Mechanical Energy If there is no friction, the speed of a roller coaster will depend only on its height compared to its starting height. It does not matter on path taken. Because gravity is the only force doing work. Why not normal force? © 2014 Pearson Education, Inc.

Conservative and Nonconservative Forces If friction is present, the work done depends not only on the starting and ending points, but also on the path taken. Friction is called a nonconservative force. © 2014 Pearson Education, Inc.

6-5 Conservative and Nonconservative Forces Potential energy can only be defined for conservative forces. © 2014 Pearson Education, Inc.

Conservative and Nonconservative Forces Therefore, we distinguish between the work done by conservative forces and the work done by nonconservative forces. We find that the work done by nonconservative forces is equal to the total change in kinetic and potential energies:

Work Done by a Constant Force The work done by a non conservative force is also equal to the following. In this case energy is being added to the system. © 2014 Pearson Education, Inc.

6-9 Energy Conservation with Dissipative Processes; Solving Problems If there is a nonconservative force such as friction, where do the kinetic and potential energies go? They become heat; the actual temperature rise of the materials involved can be calculated. © 2014 Pearson Education, Inc.

Power Power is the rate at which work is done— In the SI system, the units of power are watts: 1W = 1 J/s The difference between walking and running up these stairs is power— the change in gravitational potential energy is the same. (6-17) © 2014 Pearson Education, Inc.

Power Power is also needed for acceleration and for moving against the force of gravity. The average power can be written in terms of the force and the average velocity: (6-18)