University of Ioannina

Slides:



Advertisements
Similar presentations
169 Tm Mössbauer Spectroscopy J.M. Cadogan Department of Physics and Astronomy University of Manitoba Winnipeg, Manitoba, R3T 2N2 Canada
Advertisements

157 T INTERNAL MAGNETIC FIELD IN Fe[C(SiMe 3 ) 3 ] 2 COMPOUND AT 20K Ernő Kuzmann, 1,2 Roland Szalay, 2 Attila Vértes, 1,2 Zoltán Homonnay, 2 Imre Pápai,
Inorganic Chemistry Laboratory
CZUŁOŚĆ SPEKTROSKOPII MÖSSBAUEROWSKIEJ NA PRZEJŚCIE DO NADPRZEWODNICTWA W Ba 0.6 K 0.4 Fe 2 As 2 1 Zakład Spektroskopii Mössbauerowskiej, Instytut Fizyki,
Lecture 5 Crystal Chemistry Part 4: Compositional Variation of Minerals 1. Solid Solution 2. Mineral Formula Calculations.
Electron Spin Resonance Spectroscopy
Ionic Compounds Chapter 8. Forming Chemical Bonds Chemical Bond: The force that holds two atoms together. Valence Electrons Opposite forces attract Octet.
When an nucleus releases the transition energy Q (say 14.4 keV) in a  -decay, the  does not carry the full 14.4 keV. Conservation of momentum requires.
Catalysis and Catalysts - XPS X-Ray Electron Spectroscopy (XPS)  Applications: –catalyst composition –chemical nature of active phase –dispersion of active.
GROWTH AND INVESTIGATION OF HALF-METALLIC Fe 3 O 4 THIN FILMS B. Vengalis, V. Lisauskas, A. Lisauskas, K.Šliužienė, V. Jasutis Semiconductor Physics Institute,
Lecture 2 (9/11/2006) – Crystal Chemistry Part 1: Atoms, Elements, and Ions.
Analysis of Iron Oxidation in Garnets By, Erica A. Emerson By, Erica A. Emerson.
Lecture 8a EPR Spectroscopy.
Corey Thompson Technique Presentation 03/21/2011
Drs. Wei Tian & Yanhui Chen Sep-Dec Main Content Introduction of Nuclear Magnetic Resonance (NMR) Analysis One Dimensional NMRs 1 H NMR 13 C NMR.
Mossbauer Spectroscopy
Mössbauer spectroscopy References: J.P. Adloff, R. Guillaumont: Fundamentals of Radiochemistry, CRC Press, Boca Raton, 1993.
57 Mn Mössbauer collaboration at ISOLDE/CERN Emission Mössbauer spectroscopy of advanced materials for opto- and nano- electronics Spokepersons: Haraldur.
Year 12 Chemistry Unit 3 – AOS 1 Chemical Analysis.
Structural and Magnetic properties of α-Fe 2 O 3 Nanoparticles د.محمد عبد الله ولد محمد الأمين قسم الفيزياء كلية العلوم جامعة الإمام محمد بن سعود الإسلامية.
Nuclear Magnetic Resonance Spectroscopy Dr. Sheppard Chemistry 2412L.
Superconducting FeSe studied by Mössbauer spectroscopy and magnetic measurements A. Błachowski 1, K. Ruebenbauer 1, J. Żukrowski 2, J. Przewoźnik 2, K.
Points of Interest Synthesis Crystallography Physical Properties.
Ionic radius is related to the valence of the ion - ions that have lost electrons (cations) are smaller than their neutral state, ions that have gained.
NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY Basics of …….. NMR phenomenonNMR phenomenon Chemical shiftChemical shift Spin-spin splittingSpin-spin splitting.
Department of Chemistry-BK 21, SungKyunKwan Univ.
EPR Study of Vanadyl Complexes
1 Nuclear Magnetic Resonance Nuclear Magnetic Resonance (NMR) Applying Atomic Structure Knowledge to Chemical Analysis.
Ch. Urban 1, S. Janson 1, U. Ponkratz 1,2, O. Kasdorf 1, K. Rupprecht 1, G. Wortmann 1, T. Berthier 3, W. Paulus 3 1 Universität Paderborn, Department.
Synthesis and Properties of Magnetic Ceramic Nanoparticles Monica Sorescu, Duquesne University, DMR Outcome Researchers in Duquesne University.
Superconducting FeSe studied by Mössbauer spectroscopy and magnetic measurements A. Błachowski 1, K. Ruebenbauer 1, J. Żukrowski 2, J. Przewoźnik 2, K.
Synthesis and Properties of Magnetic Ceramic Nanoparticles Monica Sorescu, Duquesne University, DMR Outcome Researchers at Duquesne University.
Mineral Spectroscopy Visible Infrared Raman Mössbauer NMR.
New emission Mössbauer spectroscopy studies at ISOLDE in 2015 Haraldur Páll Gunnlaugsson, Torben E. Mølholt, Karl Johnston, Juliana Schell, The Mössbauer.
Lecture 8: Volume Interactions Thursday, 28 January 2010 Ch 1.8 Major spectral features of minerals (p. xiii-xv), from Infrared.
MÖSSBAUER SPECTROSCOPY OF IRON-BASED SUPERCONDUCTOR FeSe
Characterization of Coal Ash by Materials Science Techniques R. J. Lauf Metals & Ceramics Division Oak Ridge National Laboratory.
Emission Mössbauer spectroscopy of advanced materials for opto- and nano-electronics Spokepersons: Haraldur Páll Gunnlaugsson Sveinn Ólafsson Contact person:
Mossbauer spectroscopy
Particle Size Dependence of Magnetic Properties in Cobalt Ferrite Nanoparticles Jun Hee Cho 1, Sang Gil Ko 1, Yang kyu Ahn 1, Eun Jung Choi 2 * 1 Department.
Mössbauer spectroscopy
Anezka Radkova, Heather Jamieson
ON THE FOAMING KINETICS FOR THE SYNTHESIS OF POROUS INORGANIC POLYMERS
R.H. Matjiea,b, Zhongsheng Lic, Colin R. Wardc
Boron Removal from Metallurgical-Grade Silicon Using CaO-SiO2 Slag
Ion beam analysis of materials with MeV beams at the Ruhr University Bochum Ruhr-Uni-Bochum Contribution to the ISOLDE workshop, Dec, 4th 2017, Hans-Werner.
Is lead part of the glass network in lead glasses
Nuclear Magnetic Resonance Spectroscopy
Hyperfine interaction studies in Manganites
From : Introduction to Nuclear and Particle Physics A.Das and T.Ferbel
Influence of chemistry of vitrified residues on the properties of blended inorganic polymers with calcined kaolinitic clay E. François1,2, J. Elsen1, Y.
Lecture 8: Volume Interactions
آزمايشگاه فناوري نانو کفا آزمايشگاه فناوري نانو کفا
Ch. 7 Ionic and Metallic Bonding
CHEM 312: Lecture 6 Part 2 Gamma Decay
Introduction Spectroscopy is an analytical technique which helps determine structure. It destroys little or no sample. The amount of light absorbed by.
Glass forming ability of slags in the FeOx-SiO2-CaO system and properties of inorganic polymers made thereof J. Van De Sandea, A. Peysa, T. Hertela, S.
CONVERTING STEEL SLAG INTO SI-CA BASED BUILDING CERAMICS
Chemical Formulas Subscripts represent relative numbers of elements present (Parentheses) separate complexes or substituted elements Fe(OH)3 – Fe bonded.
Lecture 8: Volume Interactions
Nuclear Magnetic Resonance (NMR)
Determining Composition through X-Ray Photoelectron Spectroscopy
Mössbauer study of BaFe2(As1-xPx)2 iron-based superconductors
Mössbauer study of BaFe2(As1-xPx)2 iron-based superconductors
Ionic Compounds Chapter 8.
Lecture 8: Volume Interactions
Chemistry/Physical Setting
Stoichiometry Some minerals contain varying amounts of 2+ elements which substitute for each other Solid solution – elements substitute in the mineral.
Ion-beam, photon and hyperfine methods in nano-structured materials
Mr.Halavath Ramesh 16-MCH-001 Department of Chemistry Loyola College-Chennai University of Madras.
Presentation transcript:

University of Ioannina INVESTIGATING THE PROPERTIES OF IRON IN INORGANIC POLYMERS WITH 57Fe MÖSSBAUER SPECTROSCOPY Alexios P. Douvalis Physics Department University of Ioannina Ioannina-Greece

Slags and Inorganic Polymers (IP): why 57Fe Mössbauer Spectroscopy. Outline Slags and Inorganic Polymers (IP): why 57Fe Mössbauer Spectroscopy. Brief introduction and basic parameters. The state of iron and its properties in synthetic Slags made of binary FeOx-SiO2 (Bi) and ternary FeOx-CaO-SiO2 (Te) oxide systems and the corresponding IPs, as seen by 57Fe Mössbauer Spectroscopy. Estimating the valence, atomic environment and structure. Identifying the iron-bearing phases. Suggesting paths to explain the role of iron in the IP formation. Following the evolution of the 57Fe Mössbauer spectra at different reaction stages of the Slag with the activating SiO2/Na2O-H2O/Na2O solution. Monitoring the oxidation of Fe2+ to Fe3+.

Recoil-free γ-ray nuclear resonant emission and absorption simply: Mössbauer spectroscopy Eγ Εg Ee Source Absorber-Sample Ε0 Nuclear Energy Levels γ ER=Eγ2/2Mc2≈E02/2Mc2 Eγ=E0 - ΕR Free Atom Recoil Energy M Mössbauer spectroscopy “works” only in solids (those that are, or can become under experimental measuring conditions), and only with particular nuclei, not in soft matter (gases/liquids/loosely bound solids), because the process needs to be recoilless.

γ-rays 57Co(Rh) 57Fe Eγ 57Fe Mössbauer Spectroscopy Ee Ee γ Ε0 Εg Εg Source-emission (stable & identical chemical environment) γ-rays Εg Ee Ε0 57Co(Rh) 57Fe Ee Eγ γ Hyperfine Interactions (multiple transitions) Εg Sample-absorption (different iron spices in the same phase or in different phases, or both, will appear as different contributions in the spectra)

57Fe Mössbauer Spectroscopy γ-ray energy modulation is required to achieve absorption resonance Source velocity modulation sample γ ray detector Electronics/Recording Transmission geometry Hyperfine Interactions-Mössbauer Parameters 1 2 3 6 5 4 QS IS Bhf ε Superposition of several contributions atomic environment valence state coordination magnetic properties structure Isomer Shift (IS) IS & Quadrupole Splitting QS IS & Hyperfine Magnetic Field (Bhf) IS & Bhf & Quadrupole Shift (2ε) Absorption area (A) Fe3+ Fe2+a Fe2+b Α(Fe3+):A(Fe2+a):A(Fe2+b)=2:1:1 Ratios of Absorption Areas of individual components proportional to the ratios of populations of specific Fe atoms or ions in sample

Fe3+ Fe2+ IS* (mm s-1) QS (mm s-1) Fe3+ Fe2+ IS* (mm s-1) Bhf (kG) 57Fe Mössbauer Spectroscopy Expected values of Mössbauer Parameters for high spin Fe3+ (S=5/2) and Fe2+ (S=2) in Oxides Fe3+ Fe2+ 0.25-0.55 IS* (mm s-1) 0.75-1.50 0 -1.50 0 - 4.00 QS (mm s-1) Fe3+ Fe2+ 0.25-0.55 IS* (mm s-1) 0.75-1.50 100 - 400 450 -550 Bhf (kG) Coordination: IS(Fe3+/2+)tetrahedral< IS(Fe3+/2+)octahedral *IS relative to α-Fe @ 300 K

Table 2. XRD-Rietveld analyses (external standard-based) Synthetic binary FeOx-SiO2 (Bi) and ternary FeOx-CaO-SiO2 (Te) Slags and the corresponding IPs Table 1. (XRF) Starting Mixture Components Bi (wt.%) Te (wt.%) FeO 73 48 SiO2 27 35 CaO - 17 Activating solutions with molar ratios SiO2/Na2O=1.2 and H2O/Na2O=22. Curing ~ 4 weeks. Table 2. XRD-Rietveld analyses (external standard-based) wt.% Fayalite (Fe2SiO4) Ca-Fayalite (Fe2-xCax)SiO4 Magnetite (Fe3O4) Quartz (SiO2) Wollastonite (CaSiO3) Wüstite (FeO) Amorphous Bi-Slag 53.7 - 1.5 0.4 2.5 41.9 Bi-IP 42.2 1.2 0.0 2.0 54.6 Te-Slag 4.3 0.7 0.9 93.4 Te-IP 4.9 0.3 0.5 94.0

Bi samples Complete analysis

Bi samples Complete analysis

Te samples Complete analysis

Te samples Complete analysis

Bi-Te samples 77 K Mössbauer spectra comparison Fe2+ IS=1.26 QS=3.05 ΔQS=0.14 A=85% ΔQS=0.13 A=73% (Fe3+) IS=0.43 QS=1.04 ΔQS=0.53 A=4% Fe3+ IS=0.42 QS=0.82 ΔQS=0.41 A=16% Fe3+ IS=0.49 QS=1.24 ΔQS=0.32 A=7% IS=0.48 QS=0.81 ΔQS=0.39 A=27% Fe2+1 IS=1.28 QS=2.63 ΔQS=0.42 A=39% Fe2+2 ISSlag=1.12 QSSlag=2.02 ΔQS=0.55 A=51% QS=2.81 A=28% IS=1.12 QS=2.12 A=40% R(Fe3+IP)≈4xR(Fe3+Slag) R(Fe3+IP)≈4xR(Fe3+Slag) Te[R(Fe3+IP)]≈1.5xBi[R(Fe3+IP)] Γ/2=(0.14 ±0.02) mm/s ΔQS(Fe2+)-Te > ΔQS(Fe2+)-Bi  enhancement of glass phase formation with Ca addition IS, QS, ΔQS in mm/s (±0.02 mm/s)

Increase of the amount of Fe3+ with Ca addition 57Fe Mössbauer Spectroscopy Bi Te Increase of the amount of Fe3+ with Ca addition

57Fe Mössbauer Spectroscopy Weighted average values Bi Te Influence of Ca addition to the electronic configuration & coordination of Fe2+/Fe3+

57Fe Mössbauer Spectroscopy Weighted average values Bi Te Influence of Ca addition to the electronic configuration & coordination of Fe2+/Fe3+

57Fe Mössbauer Spectroscopy Weighted average values Bi Te Enhancement of glass phase formation with Ca addition

Suggestions for relative phases hosting Fe2+ and Fe3+ ions Fe2+ in Slag precursor and IP: Fayalite-type Fe2+2SiO4 (crystalline & amorphous for Bi) Ca-Fayalite-type (Fe2+2-zCaz)SiO4 and Ca-Ferrosilite-type (Fe2+2-zCaz)Si2O6 (amorphous for Te) Fe3+ in Slag precursor and IP: Ferrifayalite-type (Fe2+2-x□yFe3+x)SiO4 (crystalline & amorphous for Bi) Ca-Ferrifayalite-type (Fe2+2-x-zCaz□ye3+x)SiO4 (amorphous for Te) Fe3+ in glass structure: The large drop in QS values from the Slags to the IPs reflect a shift in the coordination (O) number most probable from 6 (nn) to 5 or 4  the ferric ion could behave like silicon in the IP binder, i.e. it could act as a network former. Crystal structure of Fayalite (olivine-type) Fe2+2SiO4 Crystal structure of Ferrosilite (pyroxene-type) Fe2+2Si2O6 Bi & Te samples Te samples

Starting Mixture Components wt% Evolution of the 77K 57Fe Mössbauer spectra at different reaction stages 1 d 3 d 4 w 7 w Starting Mixture Components wt% FeO SiO2 CaO Al2O3 MgO 47 34 12 5 2 Activating solutions with molar ratios SiO2/Na2O=1.6 and H2O/Na2O=20.

Conclusions Emphatic appearance of Fe3+ contributions in the IP samples resulting by oxidation of the Fe2+ states existing in the Slags after chemical reaction with the activating solutions. The amorphous part of the slags is the most active component of the starting Slag material, while the crystalline part is more resistive to oxidation. The addition of Ca seems to favor the formation of the amorphous-glass phase and enhance the presence of Fe3+ states both in the Slags and, more pronounced, in the IPs. A shift in the Mössbauer parameters of the ferric ions from the slags to the IPs indicates a change in their O-coordination, suggesting that these ions could act as network formers similar to the role of Si. The oxidation of Fe2+ to Fe3+ in the curing period of the IPs is fast for the initial 1-3 days, then slower up to 4 weeks and persists further up to at least 7 weeks.

Collaborators KU LEUVEN Arne PEYS Silviana ONISEI Yiannis PONTIKES

Ioannina-Greece Mössbauer Spectroscopy & Physics of Materials Laboratory Physics department, University of Ioannina http://pml.physics.uoi.gr