TGFβig-h3 IGF-I - + - IGF-II - - + Supplementary Figure 1. Stimulated release of TGFβig-h3 by IGF-I and IGF-II.

Slides:



Advertisements
Similar presentations
(+++) Normal breast ATM (++) IDC ATM Lymph node metastasis negative positive P-value A B X200 C Vector ATM - WT.
Advertisements

Figure S1 A B Figure S1. SPATA2 is required for TNFα or zVAD.fmk induced necroptosis in L929 cells. (A) L929 cells were transfected with a pool of four.
Cell Physiol Biochem 2016;38: DOI: /
AntimiR-30b Inhibits TNF-α Mediated Apoptosis and Attenuated Cartilage Degradation through Enhancing Autophagy Cell Physiol Biochem 2016;40:
Volume 133, Issue 1, Pages (July 2007)
Fig. 7 Localization of the element(s) responsible for the transcriptional suppression by PPAR-γ. A, Rat VSMCs were transfected with either −1969/+104-luc,
Platelet-Derived Growth Factor-BB Mediates Cell Migration through Induction of Activating Transcription Factor 4 and Tenascin-C  Kristine P. Malabanan,
Nm23-H1 Regulates Glucose-Stimulated Insulin Secretion in Pancreatic β-Cells via Arf6-Rac1 Signaling Axis Cell Physiol Biochem 2013;32: DOI: /
by Johannes B. K. Schwarz, Nicolas Langwieser, Nicole N
Loss of Hdac3 impairs Ar signaling in mouse prostate tissues and has no effect on apoptosis Loss of Hdac3 impairs Ar signaling in mouse prostate tissues.
Proadrenomedullin N-Terminal 20 Peptide
A B C D Supplementary Figure 1 CMV p300
MicroRNA-558 regulates the expression of cyclooxygenase-2 and IL-1β-induced catabolic effects in human articular chondrocytes  S.J. Park, E.J. Cheon,
Low-intensity pulsed ultrasound (LIPUS) treatment of cultured chondrocytes stimulates production of CCN family protein 2 (CCN2), a protein involved in.
Volume 127, Issue 2, Pages (August 2004)
Suppl. Figure 3 A H1975 Atg7 shRNA 3 MOI Atg7 shRNA 6 MOI
Internalization of kinase‐dead epidermal growth factor receptor K721A
The ER-Mitochondria Tethering Complex VAPB-PTPIP51 Regulates Autophagy
Volume 133, Issue 1, Pages (July 2007)
Angiogenic effects of stromal cell-derived factor-1 (SDF-1/CXCL12) variants in vitro and the in vivo expressions of CXCL12 variants and CXCR4 in human.
Cell Physiol Biochem 2016;39: DOI: /
MicroRNA-558 regulates the expression of cyclooxygenase-2 and IL-1β-induced catabolic effects in human articular chondrocytes  S.J. Park, E.J. Cheon,
Volume 135, Issue 3, Pages e2 (September 2008)
Vascular endothelial growth factor stimulates protein kinase CβII expression in chronic lymphocytic leukemia cells by Simon T. Abrams, Benjamin R. B. Brown,
Lori Redmond, Amir H. Kashani, Anirvan Ghosh  Neuron 
M.A. Greene, R.F. Loeser  Osteoarthritis and Cartilage 
Human osteoarthritic chondrocytes are impaired in matrix metalloproteinase-13 inhibition by IFN-γ due to reduced IFN-γ receptor levels  R. Ahmad, M. El.
Low-intensity pulsed ultrasound (LIPUS) treatment of cultured chondrocytes stimulates production of CCN family protein 2 (CCN2), a protein involved in.
MicroRNA-320 regulates matrix metalloproteinase-13 expression in chondrogenesis and interleukin-1β-induced chondrocyte responses  F. Meng, Z. Zhang, W.
Volume 14, Issue 1, Pages (January 2008)
Α-MSH inhibits TNF-α-induced matrix metalloproteinase-13 expression by modulating p38 kinase and nuclear factor κB signaling in human chondrosarcoma HTB-94.
S534 phosphorylation affects DNA binding and gene expression by NF-κB at late time points through regulation of p65 stability. S534 phosphorylation affects.
The UPEC Pore-Forming Toxin α-Hemolysin Triggers Proteolysis of Host Proteins to Disrupt Cell Adhesion, Inflammatory, and Survival Pathways  Bijaya K.
Volume 24, Issue 1, Pages (January 2016)
Volume 145, Issue 1, Pages e3 (July 2013)
Nuclear calcium signaling drives nuclear actin polymerization in T cells. Nuclear calcium signaling drives nuclear actin polymerization in T cells. (A)
Nuclear Arp3 mediates formation of TCR-induced nuclear actin filaments
Volume 21, Issue 10, Pages (December 2017)
by Silvia Mele, Stephen Devereux, Andrea G
NADPH Oxidase 1 Overexpression Enhances Invasion via Matrix Metalloproteinase-2 and Epithelial–Mesenchymal Transition in Melanoma Cells  Feng Liu, Angela.
Volume 13, Issue 3, Pages (March 2006)
Activation of Indian hedgehog promotes chondrocyte hypertrophy and upregulation of MMP-13 in human osteoarthritic cartilage  F. Wei, J. Zhou, X. Wei,
Mechanism Underlying ATP Release in Human Epidermal Keratinocytes
SIRT1, a Class III Histone Deacetylase, Regulates LPS-Induced Inflammation in Human Keratinocytes and Mediates the Anti-Inflammatory Effects of Hinokitiol 
HURP is an obstacle for KIF18A on K-fibers in metaphase cells.
A Ratiometric Sensor for Imaging Insulin Secretion in Single β Cells
Inhibition of β-catenin by the Smad4/BMP pathway.
Fig. 3. HECTD2 contains a naturally occurring polymorphism at A19, which mislocalizes to the cytosol. HECTD2 contains a naturally occurring polymorphism.
Volume 24, Issue 1, Pages (January 2016)
C-terminal JM-B of EGFR is required for EGF-induced recruitment of TRAF4 to EGFR. (A) The HSQC spectra of 100 μM 15N-labeled TRAF4-TRAF in the absence.
Transient Receptor Potential Vanilloid-1 Mediates Heat-Shock-Induced Matrix Metalloproteinase-1 Expression in Human Epidermal Keratinocytes  Wen H. Li,
The histidine-rich loop regulates accessibility of the active site and RDEL motif in vivo. The histidine-rich loop regulates accessibility of the active.
ICAM-1 forms distinct complexes with filamin B, α-actinin-4 and cortactin. ICAM-1 forms distinct complexes with filamin B, α-actinin-4 and cortactin. (A)
(fold of TGF-β1 response)
IGF-II and IGFBP-5 rescue the atrophy of myotubes induced by adipocytes. IGF-II and IGFBP-5 rescue the atrophy of myotubes induced by adipocytes. A–D:
Graf-dependent GEEC endocytosis is required for EGFR internalization and degradation at high Spi. Graf-dependent GEEC endocytosis is required for EGFR.
Volume 26, Issue 12, Pages e5 (March 2019)
Fig. 4. Tetracycline-regulated expression of ClC-5 in the HEK293 cells stably expressing gastric H+,K+-ATPase.(A) Alignments of rat ClC-5, human ClC-5,
Fig. 6 Metarrestin treatment reduces pre-RNA synthesis and Pol I occupancy at rDNA without changing rDNA chromatin states. Metarrestin treatment reduces.
Ubiquitin mediates the interaction between Smo and Vps36.
Lats2 functions at the G1–S checkpoint in U2OS cells.
The Mad2 Spindle Checkpoint Protein Undergoes Similar Major Conformational Changes Upon Binding to Either Mad1 or Cdc20  Xuelian Luo, Zhanyun Tang, Josep.
A B Supplemental Figure 1. The sketch map of the plasmid (A) and the sequences.
Selective delivery of pIC/PPHAffibody decreases the survival of HER2-overexpressing cells. Selective delivery of pIC/PPHAffibody decreases the survival.
IGF-IR in human head and neck cancer.
Dysregulated NF-κB activation in Il1r8+/+/lpr and Il1r8−/−/lpr mice.
The effects of HDAC2 knockdown on cell-cycle proteins.
Osteoactivin expression is required for the invasive phenotype of in vivo selected bone metastatic 4T1 breast cancer cells. Osteoactivin expression is.
KDM4A levels affect the distribution of translation initiation factors
D-GM3 promotes uPAR clustering on the cell surface and activates p38 MAPK. A, uPAR expression in cells was either knocked down by treatment with 4 independent.
Presentation transcript:

TGFβig-h3 IGF-I - + - IGF-II - - + Supplementary Figure 1. Stimulated release of TGFβig-h3 by IGF-I and IGF-II. Western blots shows both IGF-I (50ng/ml) and IGF-II (100ng/ml) stimulated TGFβig-h3 release from gastric myofibroblasts. Cells GAPDH Cells TGFβig-h3 Media TGFβig-h3 Ionomycin - + Supplementary Figure 2. Calcium-dependent stimulated release of TGFβig-h3 from gastric myofibroblasts. A) Western blot showing that IGF-II (100 ng/ml) stimulated release of TGFβig-h3 was decreased in Ca2+ free media. B) The calcium ionophore, ionomycin (1µM), stimulated TGFβig-h3 release from gastric myofibroblasts. 37kDa 68kDa 74kDa A B - + - + - - + + IGF-II Ca2+ free

MMP-7 MMP-7 + AG1024 F/Fo 1.20 0.95 Supplementary Figure 3. Intracellular Ca2+ transients induced by MMP-7 are inhibited by AG1024. MMP-7 (2 g/ml) increased intracellular calcium in myofibroblasts (top) and this was inhibited in the presence of AG1024 (3.2µM) (bottom); records from a region of interest placed in the centre of the cell.

A. Decorin B. Galectin-3 Sequence: SAIQLGNY Sequence: IALDFQR Sequence IGF-II Mean ratio IGF-II vs control Quantified in (out of 3 replicates) DLPPDTTLLDLQNNK 1.26 3 SAIQLGNYK 0.99 VPGGLAEHK 1.51 2 VVQCSDLGLDK 1.18 VVQCSDLGLDKVPK 0.43 Sequence: SAIQLGNY B. Galectin-3 Sequence IGF-II   Mean ratio IGF-II vs control Quantified in (out of 3 replicates) IALDFQR 0.77 3 Sequence: IALDFQR

Mean ratio IGF-vs control Quantified in (out of 3 replicates) C. TGFig-h3 Sequence IGF-II   Mean ratio IGF-vs control Quantified in (out of 3 replicates) EGVYTVFAPTNEAFR 2.50 3 GDELADSALEIFK 1.73 LTLLAPLNSVFK 1.58 2 STVISYECCPGYEK 3.04 VLTDELK 2.65 Sequence: EGVYVTVFAPTNEAFR

Mean ratio IGF-II vs control Quantified in (out of 3 replicates) D. IGFBP-5 Sequence IGF-II Mean ratio IGF-II vs control Quantified in (out of 3 replicates) AVYLPNCDR 1.55 3 FVGGAENTAHPR 2.10 GVCLNEK 1.29 HMEASLQELK 1.35 IISAPEMR 1.58 QESEQGPCR 1.51 2 Sequence: AVYLPNCDR Supplementary Figure 4. Representative examples of SILAC data for identification and quantification of peptides from media of responder cells. The examples shown are A) decorin, b) galectin-3, C) TGFig-h3 and D) IGFBP-5. In each case, tryptic peptides shown underlined on a yellow background were quantified in at least 2 out of 3 replicate samples; representative spectra for one peptide are shown, together with a Table of the mean ratio of abundance in IGF-II treated samples compared with control.

A. Preprosecretogranin II 10 20 30 40 50 60 MAEAKTHWLG AALSLIPLIF LISGAEAASF QRNQLLQKEP DLRLENVQKF PSPEMIRALE 70 80 90 100 110 120 YIENLRQQAH KEESSPDYNP YQGVSVPLQQ KENGDESHLP ERDSLSEEDW MRIILEALRQ 130 140 150 160 170 180 AENEPQSAPK ENKPYALNSE KNFPMDMSDD YETQQWPERK LKHMQFPPMY EENSRDNPFK 190 200 210 220 230 240 RTNEIVEEQY TPQSLATLES VFQELGKLTG PNNQKRERMD EEQKLYTDDE DDIYKANNIA 250 260 270 280 290 300 YEDVVGGEDW NPVEEKIESQ TQEEVRDSKE NIEKNEQIND EMKRSGQLGI QEEDLRKESK 310 320 330 340 350 360 DQLSDDVSKV IAYLKRLVNA AGSGRLQNGQ NGERATRLFE KPLDSQSIYQ LIEISRNLQI 370 380 390 400 410 420 PPEDLIEMLK TGEKPNGSVE PERELDLPVD LDDISEADLD HPDLFQNRML SKSGYPKTPG 430 440 450 460 470 480 RAGTEALPDG LSVEDILNLL GMESAANQKT SYFPNPYNQE KVLPRLPYGA GRSRSNQLPK 490 500 510 520 530 540 AAWIPHVENR QMAYENLNDK DQELGEYLAR MLVKYPEIIN SNQVKRVPGQ GSSEDDLQEE 550 560 570 580 590 600 EQIEQAIKEH LNQGSSQETD KLAPVSKRFP VGPPKNDDTP NRQYWDEDLL MKVLEYLNQE 610 KAEKGREHIA KRAMENM Patient 1, shotgun (8 tryptic peptides). Patient 2, shotgun (8 tryptic peptides). B. Preproenkephalin 10 20 30 40 50 60 MARFLTLCTW LLLLGPGLLA TVRAECSQDC ATCSYRLVRP ADINFLACVM ECEGKLPSLK 70 80 90 100 110 120 IWETCKELLQ LSKPELPQDG TSTLRENSKP EESHLLAKRY GGFMKRYGGF MKKMDELYPM 130 140 150 160 170 180 EPEEEANGSE ILAKRYGGFM KKDAEEDDSL ANSSDLLKEL LETGDNRERS HHQDGSDNEE 190 200 210 220 230 240 EVSKRYGGFM RGLKRSPQLE DEAKELQKRY GGFMRRVGRP EWWMDYQKRY GGFLKRFAEA 250 260 LPSDEEGESY SKEVPEMEKR YGGFMRF Patient 1, shotgun (1 hemi-tryptic peptide) Patient 2, shotgun (2 tryptic peptides, I hemi-tryptic) Patient 3, SILAC ± IGF (2 tryptic peptides)

C. Peptidyl α-amidating mono-oxygenase 10 20 30 40 50 60 MAGRVPSLLV LLVFPSSCLA FRSPLSVFKR FKETTRPFSN ECLGTTRPVV PIDSSDFALD 70 80 90 100 110 120 IRMPGVTPKQ SDTYFCMSMR IPVDEEAFVI DFKPRASMDT VHHMLLFGCN MPSSTGSYWF 130 140 150 160 170 180 CDEGTCTDKA NILYAWARNA PPTRLPKGVG FRVGGETGSK YFVLQVHYGD ISAFRDNNKD 190 200 210 220 230 240 CSGVSLHLTR LPQPLIAGMY LMMSVDTVIP AGEKVVNSDI SCHYKNYPMH VFAYRVHTHH 250 260 270 280 290 300 LGKVVSGYRV RNGQWTLIGR QSPQLPQAFY PVGHPVDVSF GDLLAARCVF TGEGRTEATH 310 320 330 340 350 360 IGGTSSDEMC NLYIMYYMEA KHAVSFMTCT QNVAPDMFRT IPPEANIPIP VKSDMVMMHE 370 380 390 400 410 420 HHKETEYKDK IPLLQQPKRE EEEVLDQGDF YSLLSKLLGE REDVVHVHKY NPTEKAESES 430 440 450 460 470 480 DLVAEIANVV QKKDLGRSDA REGAEHERGN AILVRDRIHK FHRLVSTLRP PESRVFSLQQ 490 500 510 520 530 540 PPPGEGTWEP EHTGDFHMEE ALDWPGVYLL PGQVSGVALD PKNNLVIFHR GDHVWDGNSF 550 560 570 580 590 600 DSKFVYQQIG LGPIEEDTIL VIDPNNAAVL QSSGKNLFYL PHGLSIDKDG NYWVTDVALH 610 620 630 640 650 660 QVFKLDPNNK EGPVLILGRS MQPGSDQNHF CQPTDVAVDP GTGAIYVSDG YCNSRIVQFS 670 680 690 700 710 720 PSGKFITQWG EESSGSSPLP GQFTVPHSLA LVPLLGQLCV ADRENGRIQC FKTDTKEFVR 730 740 750 760 770 780 EIKHSSFGRN VFAISYIPGL LFAVNGKPHF GDQEPVQGFV MNFSNGEIID IFKPVRKHFD 790 800 810 820 830 840 MPHDIVASED GTVYIGDAHT NTVWKFTLTE KLEHRSVKKA GIEVQEIKEA EAVVETKMEN 850 860 870 880 890 900 KPTSSELQKM QEKQKLIKEP GSGVPVVLIT TLLVIPVVVL LAIAIFIRWK KSRAFGDSEH 910 920 930 940 950 960 KLETSSGRVL GRFRGKGSGG LNLGNFFASR KGYSRKGFDR LSTEGSDQEK EDDGSESEEE 970 YSAPLPALAP SSS Patient 3, SILAC ± IGF (5 tryptic peptides)

D. Preproadrenomedullin 10 20 30 40 50 60 MKLVSVALMY LGSLAFLGAD TARLDVASEF RKKWNKWALS RGKRELRMSS SYPTGLADVK 70 80 90 100 110 120 AGPAQTLIRP QDMKGASRSP EDSSPDAARI RVKRYRQSMN NFQGLRSFGC RFGTCTVQKL 130 140 150 160 170 180 AHQIYQFTDK DKDNVAPRSK ISPQGYGRRR RRSLPEAGPG RTLVSSKPQA HGAPAPPSGS APHFL Patient 1, shotgun (1 hemi-tryptic peptide) Patient 3, SILAC ± IGF (2 tryptic peptides) 10 20 30 40 50 60 MLSCRLQCAL AALSIVLALG CVTGAPSDPR LRQFLQKSLA AAAGKQELAK YFLAELLSEP 70 80 90 100 110 NQTENDALEP EDLSQAAEQD EMRLELQRSA NSNPAMAPRE RKAGCKNFFW KTFTSC E. Preprosomatostatin 271, shotgun (1 tryptic, 1 hemi-tryptic peptide) Supplementary Figure 5. Examples of neuroendocrine markers identified in the secretomes of responder myofibroblasts. The sequences of A) preprosecretogranin II, B) preproenkephalin, C) peptidyl α-amidating mono-oxygenase (PAM), D) preproadrenomedullin (ADM), and E) preprosomatostatin are shown; in each case, quantified peptides are indicated by horizontal arrows. The data are from three different responder secretomes (patients 1 and 2 taken from Holmberg et al., J.Proteome Res., 2103; patient 3, this study). Validation of the expression of SGII and proenkephalin is provided in Fig 5. Validation of PAM, adrenomedullin and somatostatin localisation is shown by immunohistochemistry using Texas Red labelled secondary antibody, with SGII identified by FITC labelled secondary (PAM, ADM). Signal peptides in italics. Scale bars 10 m.

A B SGII SGII GAPDH GAPDH SGII-siRNA - + SGII-EP - + Supplementary Figure 6. Knockdown and overexpression of SGII in gastric myofibroblats. A) Representative Western blots showing decreased SGII abundance after siRNA knockdown. B) Representative Western blots showing increased SGII abundance after transfection with SGII expression plasmid (SGII- EP).