3.1 Discovery of the X-Ray and the Electron 3.2Determination of Electron Charge 3.3Line Spectra 3.4Quantization 3.5Blackbody Radiation 3.6Photoelectric.

Slides:



Advertisements
Similar presentations
© John Parkinson 1 MAX PLANCK PHOTOELECTRIC EFFECT.
Advertisements

An Introduction to Quantum
Happyphysics.com Physics Lecture Resources Prof. Mineesh Gulati Head-Physics Wing Happy Model Hr. Sec. School, Udhampur, J&K Website: happyphysics.com.
A potential difference V is maintained between the metal target and the collector cup Electrons ejected from C travel to A and G detects the flow Apply.
Early Quantum Theory and Models of the Atom
3.1Discovery of the X Ray and the Electron 3.2Determination of Electron Charge 3.3Line Spectra 3.4Quantization 3.5Blackbody Radiation 3.6Photoelectric.
3.1Discovery of the X Ray and the Electron 3.2Determination of Electron Charge 3.3Line Spectra 3.4Quantization 3.5Blackbody Radiation 3.6Photoelectric.
PHYS 3313 – Section 001 Lecture #7
1 Chapter 38 Light Waves Behaving as Particles February 25, 27 Photoelectric effect 38.1 Light absorbed as photons: The photoelectric effect Photoelectric.
2. The Particle-like Properties Of Electromagnetic Radiation
Blackbody Radiation & Planck’s Hypothesis
MAX PLANCK PHOTOELECTRIC EFFECT © John Parkinson.
CHAPTER 3 The Experimental Basis of Quantum Theory
What are the 3 ways heat can be transferred? Radiation: transfer by electromagnetic waves. Conduction: transfer by molecular collisions. Convection: transfer.
Physics at the end of XIX Century Major Discoveries of XX Century
Introduction to Quantum Physics
1.Discovery of the X Ray and the Electron 2.Determination of Electron Charge 3.Line Spectra 4.Quantization 5.Blackbody Radiation 6.Photoelectric Effect.
Physics at the end of XIX Century Major Discoveries of XX Century
Mon., Sept. 17, 2012PHYS , Fall 2012 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #6 Monday, Sept. 17, 2012 Dr. Jaehoon Yu Discovery of the.
Young/Freeman University Physics 11e. Ch 38 Photons, Electrons, and Atoms © 2005 Pearson Education.
The Particlelike Properties of Electromagnetics Radiation Wei-Li Chen 10/27/2014.
Mass spectrometry. 3.3: Line Spectra Chemical elements were observed to produce unique wavelengths of light when burned or excited in an electrical.
1 PHYS 3313 – Section 001 Lecture #8 Monday, Sept. 23, 2013 Dr. Amir Farbin Discovery of Electron Determination of Electron Charge Line Spectra Blackbody.
Quantum Mechanics. Planck’s Law A blackbody is a hypothetical body which absorbs radiation perfectly for every wave length. The radiation law of Rayleigh-Jeans.
Quantum Physics. Quantum Theory Max Planck, examining heat radiation (ir light) proposes energy is quantized, or occurring in discrete small packets with.
1 PHYS 3313 – Section 001 Lecture #10 Monday, Feb. 17, 2014 Dr. Jaehoon Yu Photoelectric Effect Compton Effect Pair production/Pair annihilation Monday,
Thompson’s experiment (discovery of electron) + - V + - Physics at the end of XIX Century and Major Discoveries of XX Century.
Chemistry 330 Chapter 11 Quantum Mechanics – The Concepts.
Physics 1C Lecture 28A. Blackbody Radiation Any object emits EM radiation (thermal radiation). A blackbody is any body that is a perfect absorber or emitter.
Quantum Physics Chapter 27!.
1 PHYS 3313 – Section 001 Lecture #9 Wednesday, Feb. 12, 2014 Dr. Jaehoon Yu Determination of Electron Charge Line Spectra Blackbody Radiation Wednesday,
Modern Physics Quantum Effects 1773 – 1829 Objectives  Explain the photoelectric effect and recognize that quantum theory can explain it, but wave theory.
4: Introduction to Quantum Physics
Origin of Quantum Theory
Wednesday, Feb. 25, 2015 PHYS , Spring 2014 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #10 Wednesday, Feb. 25, 2015 Dr. Jaehoon Yu Blackbody.
Dualisme Cahaya Sebagai Gelombang dan Partikel
Physics Lecture 6 2/8/ Andrew Brandt Monday February 8, 2010 Dr. Andrew Brandt 1.HW1 Due today HW2 weds 2/10 2.Electron+X-rays 3.Black body.
Ch2 Bohr’s atomic model Four puzzles –Blackbody radiation –The photoelectric effect –Compton effect –Atomic spectra Balmer formula Bohr’s model Frank-Hertz.
Unit 12: Part 2 Quantum Physics. Overview Quantization: Planck’s Hypothesis Quanta of Light: Photons and the Photoelectric Effect Quantum “Particles”:
3.1 Discovery of the X-Ray and the Electron 3.2Determination of Electron Charge 3.3Line Spectra 3.4Quantization 3.5Blackbody Radiation 3.6Photoelectric.
3.1 Discovery of the X-Ray and the Electron 3.2Determination of Electron Charge 3.3Line Spectra 3.4Quantization 3.5Blackbody Radiation 3.6Photoelectric.
1.2 The puzzling photoelectric effect
3.1 Discovery of the X-Ray and the Electron 3.2Determination of Electron Charge 3.3Line Spectra 3.4Quantization 3.5Blackbody Radiation 3.6Photoelectric.
Max Karl Ernst Ludwig Planck ( )
Instructor: Suchetana Chatterjee Presidency University Physics -0402
PHYS 3313 – Section 001 Lecture #11
Chapter 38 Photons: Light Waves Behaving as Particles
Max Karl Ernst Ludwig Planck ( )
MAX PLANCK PHOTOELECTRIC EFFECT © John Parkinson.
PHYS 3313 – Section 001 Lecture #9
Origin of Quantum Theory
PHYS 3313 – Section 001 Lecture #10
PHYS 3313 – Section 001 Lecture #12
General Physics (PHY 2140) Lecture 27 Modern Physics Quantum Physics
CHAPTER 3 The Experimental Basis of Quantum Physics
Chapter 38 Photons: Light Waves Behaving as Particles
Max Karl Ernst Ludwig Planck ( )
Quantum Physics Interaction of matter with energy
Blackbody Radiation All bodies at a temperature T emit and absorb thermal electromagnetic radiation Blackbody radiation In thermal equilibrium, the power.
PHOTOELECTRIC EFFECT hhhhh 12/4/2018.
PHYS 3313 – Section 001 Lecture #12
Chapter 27 Early Quantum Theory
PHYS 3313 – Section 001 Lecture #11
Blackbody Radiation All bodies at a temperature T emit and absorb thermal electromagnetic radiation Blackbody radiation In thermal equilibrium, the power.
Interaction of Electromagnetic Radiation with Matter
Atomic & Nuclear Physics
Physics at the end of XIX Century Major Discoveries of XX Century
Chapter 38 Photons: Light Waves Behaving as Particles
Photoelectric Effect And Quantum Mechanics.
PHYS 3313 – Section 001 Lecture #10
Presentation transcript:

3.1 Discovery of the X-Ray and the Electron 3.2Determination of Electron Charge 3.3Line Spectra 3.4Quantization 3.5Blackbody Radiation 3.6Photoelectric Effect 3.7X-Ray Production 3.8Compton Effect 3.9Pair Production and Annihilation Prelude to Quantum Theory CHAPTER 3 Prelude to Quantum Theory Max Karl Ernst Ludwig Planck ( ) Due this Wednesday: Krane Chapter 2: 39, 40, 41, 42, 47, 48, 49, 50, 53, 55

Wien’s Displacement Law The spectral intensity I (, T) is the total power radiated per unit area per unit wavelength at a given temperature. Wien’s displacement law: The maximum of the spectrum shifts to smaller wavelengths as the temperature is increased.

The total power radiated increases with the temperature: This is known as the Stefan-Boltzmann law, with the constant σ experimentally measured to be × 10 −8 W / (m 2 · K 4 ). The emissivity є (є = 1 for an idealized blackbody) is simply the ratio of the emissive power of an object to that of an ideal blackbody and is always less than 1. Stefan-Boltzmann Law

Rayleigh-Jeans Formula Lord Rayleigh used the classical theories of electromagnetism and thermodynamics to show that the blackbody spectral distribution should be: It approaches the data at longer wavelengths, but it deviates badly at short wavelengths. This problem for small wavelengths became known as the ultraviolet catastrophe and was one of the outstanding exceptions that classical physics could not explain.

Planck made two modifications to the classical theory: The oscillators (of electromagnetic origin) can only have certain discrete energies, E n = nh, where n is an integer, is the frequency, and h is called Planck’s constant: h = × 10 −34 J·s. The oscillators can absorb or emit energy in discrete multiples of the fundamental quantum of energy given by:  E = h Planck’s radiation law Planck assumed that the radiation in the cavity was emitted (and absorbed) by some sort of “oscillators.” He used Boltzman’s statistical methods to arrive at the following formula that fit the blackbody radiation data. Planck’s Radiation Law

3.6: Photoelectric Effect Methods of electron emission: Thermionic emission: Applying heat allows electrons to gain enough energy to escape. Secondary emission: The electron gains enough energy by transfer from another high-speed particle that strikes the material from outside. Field emission: A strong external electric field pulls the electron out of the material. Photoelectric effect: Incident light (electromagnetic radiation) shining on the material transfers energy to the electrons, allowing them to escape. We call the ejected electrons photoelectrons.

Photo-electric Effect Classical Theory The kinetic energy of the photoelectrons should increase with the light intensity and not depend on the light frequency. Classical theory also predicted that the electrons absorb energy from the beam at a fixed rate. So, for extremely low light intensities, a long time would elapse before any one electron could obtain sufficient energy to escape. Initial observations by Heinrich Hertz 1887

Photo-electric Effect Experimental Setup

Photo-electric effect observations The kinetic energy of the photoelectrons is independent of the light intensity. The kinetic energy of the photoelectrons, for a given emitting material, depends only on the frequency of the light. Electron kinetic energy

Photo- electric effect observations There was a threshold frequency of the light, below which no photoelectrons were ejected. The existence of a threshold frequency is completely inexplicable in classical theory. Electron kinetic energy

Photo- electric effect observations When photoelectrons are produced, their number (not their kinetic energy) is proportional to the intensity of light. (number of electrons) Also, the photoelectrons are emitted almost instantly following illumination of the photocathode, independent of the intensity of the light.

Einstein suggested that the electro-magnetic radiation field is quantized into particles called photons. Each photon has the energy quantum: where is the frequency of the light and h is Planck’s constant. Alternatively, Einstein’s Theory: Photons where:

Conservation of energy yields: Einstein’s Theory In reality, the data were a bit more complex. Because the electron’s energy can be reduced by the emitter material, consider v max (not v ): where  is the work function of the metal (potential energy to be overcome before an electron could escape). Electron kinetic energy

3.7: X-Ray Production: Theory An energetic electron passing through matter will radiate photons and lose kinetic energy, called bremsstrahlung. Since momentum is conserved, the nucleus absorbs very little energy, and it can be ignored. The final energy of the electron is determined from the conservation of energy to be:

Photons also have momentum! Use our expression for the relativistic energy to find the momentum of a photon, which has no mass: Alternatively: Comet tails (other forces are small) Viking spacecraft (would've missed Mars by 15,000 km) Stellar interiors (resists gravity) When radiation pressure is important:

X-Ray Production: Experiment Current passing through a filament produces copious numbers of electrons by thermionic emission. If one focuses these electrons by a cathode structure into a beam and accelerates them by potential differences of thousands of volts until they impinge on a metal anode surface, they produce x rays by bremsstrahlung as they stop in the anode material.

Inverse Photoelectric Effect Conservation of energy requires that the electron kinetic energy equal the maximum photon energy (neglect the work function because it’s small compared to the electron potential energy). This yields the Duane-Hunt limit, first found experimentally. The photon wavelength depends only on the accelerating voltage and is the same for all targets.