Target work plan for LBNO study Chris Densham STFC Rutherford Appleton Laboratory.

Slides:



Advertisements
Similar presentations
Matt Rooney RAL The T2K Beam Window Matt Rooney Rutherford Appleton Laboratory BENE November 2006.
Advertisements

The Current T2K Beam Window Design and Upgrade Potential Oxford-Princeton Targetry Workshop Princeton, Nov 2008 Matt Rooney.
Ottone Caretta & Chris Densham Technology Business Unit Rutherford Appleton Laboratory A new idea for NuFact targets and beam dumps BENE Nov 06 – Frascati,
Mercury Beam Dump Simulations Tristan Davenne Ottone Caretta STFC Rutherford Appleton Laboratory, UK November-2008.
Mike Fitton Engineering Analysis Group Design and Computational Fluid Dynamic analysis of the T2K Target Neutrino Beams and Instrumentation 6th September.
Chris Densham RAL High Power Targets Group To be a ‘one-stop shop’ (P. Hurh) for target technology Enable optimum physics performance via sound engineering.
Target & Capture for PRISM Koji Yoshimura On behalf of PRISM Target Group Institute of Particle and Nuclear Science High Energy Accelerator Research Organization.
Status of T2K Target 2 nd Oxford-Princeton High-Power Target Workshop 6-7 th November 2008 Mike Fitton RAL.
Megawatt targets (and horn) for Neutrino Super-Beams RAL High Power Targets Group: Chris Densham, Tristan Davenne, Mike Fitton, Peter Loveridge, Matt Rooney,
T2K Target & Secondary Beamline - progress towards a neutrino Superbeam? Chris Densham.
Mercury Beam Dump Simulations Tristan Davenne Ottone Caretta Chris Densham STFC Rutherford Appleton Laboratory, UK 1 st joint meeting of EUROnu WP2 (Superbeam)
The JPARC Neutrino Target
Mercury Beam Dump Simulations Tristan Davenne Ottone Caretta STFC Rutherford Appleton Laboratory, UK 2 nd Princeton-Oxford High Power Target Meeting 6-7.
Managed by UT-Battelle for the Department of Energy Review of NFMCC Studies 1 and 2: Target Support Facilities V.B. Graves Meeting on High Power Targets.
Packed Bed Target for Euronu DAVENNE, Tristan (RAL) ; LOVERIDGE, Peter (RAL) ; CARETTA, Ottone (RAL) ; DENSHAM, Chris (RAL) ; ZITO, Marco (CEA Saclay)
Megawatt target studies for Neutrino Super-Beams RAL High Power Targets Group: Chris Densham, Tristan Davenne, Mike Fitton, Peter Loveridge, Otto Caretta,
JHF2K neutrino beam line A. K. Ichikawa KEK 2002/7/2 Overview Primary Proton beamline Target Decay Volume Strategy to change peak energy.
A powder jet target for a Neutrino Factory Ottone Caretta, Chris Densham (RAL), Tom Davies (Exeter University), Richard Woods (Gericke Ltd)
ISIS Second Target Station
Proton Accelerators for Science and Innovation Workshop at Fermilab
A new design for the CERN to Fréjus neutrino beam Marco Zito (IRFU/CEA-Saclay) For the EUROnu WP2 team NUFACT11 Geneva August 2nd 2011.
Next generation of ν beams Challenges Ahead I. Efthymiopoulos - CERN LAGUNA Workshp Aussois, France, September 8,2010 what it takes to design and construct.
Study of a new high power spallation target concept
LAGUNA/LBNO WP4: secondary beam line status report M. Calviani, P. Velten, A. Ferrari, I. Efthymiopoulos, C. Lazaridis (CERN) + M. Zito, V. Galymov (CEA),
Horn design for the CERN to Fréjus neutrino Super Beam Nikolas Vassilopoulos IPHC/CNRS.
EUROnu Target and Horn Studies Nikolaos Vassilopoulos/IPHC-CNRS on behalf of WP2 1ECFA Review PanelDarensbury, 02/05/2011.
T2K Secondary Beamline – Status of RAL Contributions Chris Densham, Mike Fitton, Vishal Francis, Matt Rooney, Mike Woodward, Martin Baldwin, Dave Wark.
Summary Why consider a packed bed as a high power target?
WP2 Superbeam Work Breakdown Structure Version 2 Chris Densham (after Marco Zito version 1 )
Future upgrade of the neutrino beam-line for multi-MW beam 5 th Hyper-Kamiokande open Vancouver July Yuichi Oyama (KEK) (for T2K neutrino.
Current Status and Possible Items around ‘neutrino beam’ Horn Target Remote maintenance tools Decay volume window and collimator muon monitor Many items.
1 Status of Neutrino Beamline Construction K. Nishikawa IPNS, KEK 2006 . 12 . 4.
HK Secondary Beam Issues Chris Densham STFC Rutherford Appleton Laboratory.
1 Target Station Design Dan Wilcox High Power Targets Group, Rutherford Appleton Laboratory EuroNu Annual Meeting 2012.
Horn –current design  H 0.46  H 0.48  H Weight : ????
Beam line Experiment area SC magnet Pion production target
Powder jet targets for Neutrino Facilities Ottone Caretta, Tristan Davenne, Chris Densham (Rutherford Appleton Laboratory), Richard Woods (Gericke Ltd),
COMET Target Design (COherent Muon to Electron Transition) Satoshi MIHARA.
1 Target Station Design for Neutrino Superbeams Dan Wilcox High Power Targets Group, Rutherford Appleton Laboratory NBI 2012, CERN.
Investigation of a “Pencil Shaped” Solid Target Peter Loveridge, Mike Fitton, Ottone Caretta High Power Targets Group Rutherford Appleton Laboratory, UK.
Megawatt targets for Neutrino Super-Beams (Apr. 4, 2013) RAL High Power Targets Group: Chris Densham, Tristan Davenne, Mike Fitton, Peter Loveridge, Matt.
Superbeam target work at RAL Work by: Ottone Caretta, Tristan Davenne, Peter Loveridge, Chris Densham, Mike Fitton, Matt Rooney (RAL) EURONu collaborators:
BENE/CARE Frascati November 2006 CJ Densham CCLRC Rutherford Appleton Laboratory Solid target studies in UK for T2K and for a neutrino factory JRJ.
SPL-SB and NF Beam Window Studies Stress Analysis Matt Rooney, Tristan Davenne, Chris Densham March 2010.
Status of UK contribution to LBNF beam and target system Chris Densham, Tristan Davenne, Otto Caretta, Mike Fitton, Peter Loveridge, Joe O’Dell, Andrew.
ESSnuSB Target Chris Densham, Tristan Davenne STFC Rutherford Appleton Laboratory 26 th May 2014.
Packed Bed Target Design Concept (for EURONu) Tristan Davenne, Ottone Caretta, Peter Loveridge, Chris Densham (RAL); Andrea Longhin, Marco Zito (CEA Saclay)
Engineering studies for CN2PY secondary beam. LAGUNA-LBNO General Helsinki, 26/08/20141 F. Sanchez Galan (CERN) on behalf of the CERN Secondary.
Engineering studies for the Conceptual design of the LBNO Facility 1 F. Sanchez Galan (CERN) on behalf of the CERN Secondary Beam Working Group, With contributions.
UK contribution to LBNF/DUNE beam and target system Chris Densham, Tristan Davenne, Otto Caretta, Mike Fitton, Peter Loveridge, Joe O’Dell, Andrew Atherton,
High Power Target Experience with T2K Chris Densham T2K Beamline Collaboration including RAL / KEK / Kyoto.
Design for a 2 MW graphite target for a neutrino beam Jim Hylen Accelerator Physics and Technology Workshop for Project X November 12-13, 2007.
1 Target Introduction Chris Densham STFC/RAL Mu2e Target, Remote Handling, and Heat & Radiation Shield Review Nov
T2K Target status PASI Meeting Fermilab 11 th November Chris Densham STFC Rutherford Appleton Laboratory On behalf of the T2K beam collaboration.
Chris Densham Figures of Merit for target design for neutrons, neutrinos… Chris Densham Rutherford Appleton Laboratory.
DUNE/LBNF Target Studies: Physics John Back University of Warwick 12 th April
EUROnu Super Beam Work package Marco Zito (IRFU/CEA-Saclay) For the WP2 team EURONu Review CERN April
Irradiated T2K Ti alloy materials test plans
Skeleton contributions to targets section
Tungsten Powder Test at HiRadMat Scientific Motivation
News and brief overview of Beamline plans for the next few months
Peter Loveridge High Power Targets Group
Beam Window Studies for Superbeams
WP2 (SuperBeam) Targets Status of Work Programme
Beam Dump outline work plan (UK perspective)
Target R&D for JHF neutrino
EUROnu Beam Window Studies Stress and Cooling Analysis
Superbeam Horn-Target Integration
SPL-SB and NF Beam Window Studies Stress Analysis
Presentation transcript:

Target work plan for LBNO study Chris Densham STFC Rutherford Appleton Laboratory

Some relevant inputs to LBNO target study 1.Beam optics (Philippe Velten) 2.T2K target design 3.LBNE target design study 4.T2K horn and target station layout 5.T2K remote handling 6.SPL-SB target station layout

Some comparative beam design parameters T2KLBNELBNO (Phase 1)LBNO (Phase 2) Design beam power 0.75 MW2.3 MW0.75 MW2.2 MW Beam energy30 GeV120 GeV400 GeV50 GeV Protons per spill3.3 x x x3.5x x Beam cycle 2.1 s1.33 s2 s?1 Beam radius rms 4.24 mm1.5 – 3.5 mm Target radius13 mm[4.5–10.5 mm] NuMI ‘slabs’ baseline 4-15 mm CERN to study RAL to study

Inlet pressure = 1.45 bar (gauge) Pressure drop = bar Helium cooling velocity streamlines Maximum velocity = 398 m/s Graphite core T2K Beam 30GeV, 750kW Target 23kW, 8 MPa stress Ti-6Al-4V shell Monolithic (peripherally cooled) target à la T2K? M.Fitton C.Densham

T2K target dimensions for 750 kW operation Target radius = 13 mm Horn inner radius = 27 mm

Stress wave magnitude determined by t spill <t radial period

‘Divide and Rule’ for increased power Dividing material is favoured since: Better heat transfer Lower static thermal stresses Lower dynamic stresses from intense beam pulses Helium cooling is favoured (cf water) since: No ‘water hammer’ or cavitation effects from pulsed beams Lower coolant activation, no radiolysis Negligible pion absorption – coolant can be within beam footprint For graphite, higher temperatures anneal radiation damage

LBNE 2.3 MW Be target study: Pressurised helium cooled concept Otto Caretta & Tristan Davenne

Beryllium sphere diameter13 mm Beam RMS2.2 mm Helium mass flow rate17 g/s Inlet helium pressure11.1 bar Outlet helium pressure10 bar Inlet velocity40 m/s Maximum velocity185 m/s Total heat load9.4 kW Maximum beryllium temperature178 C Helium temperature rise,  T (T in -T out ) 106 C Mid-plane temperatures Otto Caretta & Tristan Davenne LBNE 2.3 MW Be target study: Pressurised helium cooled concept

Simulation result for 14mm diameter stainless balls Need to re-do this simulation for LBNO beam parameters with graphite target

Packed Bed Testing Plans Packed bed induction heating theory Duquenne et al. Induction Heating Packed bed placed in an alternating magnetic field. Eddy currents induced in conductive spheres. Resultant Joule heating provides internal heating of spheres. Induction heater test Graydon et al.

T2K Secondary Beam-line Muon Monitor Target station Beam window Decay Volume Hadron absorber Target station (shielding, hadron absorber) designed & constructed for 3-4 MW beam power 110m

T2K horn layout in target station 2nd horn 3rd horn BEAM Iron shield (2.2m) Concrete Blocks 1st horn + target Helium Vessel

New 3 rd horn being installed Nov 2013

16 Top View Side View Lead glass window manipulator Sub-area for radioactive equipment Sub-area for manipulator operator Sub-area for top work Maintenance Area 作業者サブエリアには、初期の 放射化度合いの低い時期を除いて、 作業者は立ち入らない。 機器サブエアリアには空調ダク トが機械室から引かれ、負圧に保 たれる。作業者サブエリアは、 TS 上屋からの空気を導入する。

Target exchange system T2K Target & horn Helium cooled solid graphite rod Design beam power: 750 kW (heat load in target c.25 kW) Beam power so far: 230 kW 1 st target & horn just replaced after 4 years operation, 7e20 p.o.t. π π p

Target exchange procedure #1

Target exchange procedure #2

Target exchange procedure #3

Target exchange procedure #4

Target exchange procedure #5

Target exchange procedure #6

Target exchange procedure #7

Target exchange procedure #8

Split? Increase e.g. to 14 mm (T2K)

Summary Beam optics design well advanced Engineering needs to catch up and provide feedback to optics design Collaboration between CERN and RAL groups Support from companies being considered where appropriate