Single Parameter Scaling Theories for Stationary Solutions in Nonlinear Disordered Media Single Parameter Scaling Theories for Stationary Solutions in.

Slides:



Advertisements
Similar presentations
I.L. Aleiner ( Columbia U, NYC, USA ) B.L. Altshuler ( Columbia U, NYC, USA ) K.B. Efetov ( Ruhr-Universitaet,Bochum, Germany) Localization and Critical.
Advertisements

Mott-Berezinsky formula, instantons, and integrability
GREG PETERSEN AND NANCY SANDLER SINGLE PARAMETER SCALING OF 1D SYSTEMS WITH LONG -RANGE CORRELATED DISORDER.
D-wave superconductivity induced by short-range antiferromagnetic correlations in the Kondo lattice systems Guang-Ming Zhang Dept. of Physics, Tsinghua.
Coherence, Dynamics, Transport and Phase Transition of Cold Atoms Wu-Ming Liu (刘伍明) (Institute of Physics, Chinese Academy of Sciences)
On the formulation of a functional theory for pairing with particle number restoration Guillaume Hupin GANIL, Caen FRANCE Collaborators : M. Bender (CENBG)
Boris Altshuler Columbia University Anderson Localization against Adiabatic Quantum Computation Hari Krovi, Jérémie Roland NEC Laboratories America.
Phase transition of hadronic matter in a non-equilibrium approach Graduate Days, Frankfurt, , Hannah Petersen, Universität Frankfurt.
Nonlinear Evolution of Whistler Turbulence W.A. Scales, J.J. Wang, and O. Chang Center of Space Science and Engineering Research Virginia Tech L. Rudakov,
Anderson localization in BECs
Localized Perturbations of Integrable Billiards Saar Rahav Technion, Haifa, May 2004.
Anderson Localization and Nonlinearity in One-Dimensional Disordered Photonic Lattices Yoav Lahini 1, Assaf Avidan 1, Francesca Pozzi 2, Marc Sorel 2,
Multifractal superconductivity Vladimir Kravtsov, ICTP (Trieste) Collaboration: Michael Feigelman (Landau Institute) Emilio Cuevas (University of Murcia)
A semiclassical, quantitative approach to the Anderson transition Antonio M. García-García Princeton University We study analytically.
Disorder and chaos in quantum system: Anderson localization and its generalization (6 lectures) Boris Altshuler (Columbia) Igor Aleiner (Columbia)
VARIATIONAL APPROACH FOR THE TWO-DIMENSIONAL TRAPPED BOSE GAS L. Pricoupenko Trento, June 2003 LABORATOIRE DE PHYSIQUE THEORIQUE DES LIQUIDES Université.
T. Odagaki and T. Ekimoto Department of Physics, Kyushu University Ngai Fest September 16, 2006.
THE ANDERSON LOCALIZATION PROBLEM, THE FERMI - PASTA - ULAM PARADOX AND THE GENERALIZED DIFFUSION APPROACH V.N. Kuzovkov ERAF project Nr. 2010/0272/2DP/ /10/APIA/VIAA/088.
Dynamics of phase transitions in ion traps A. Retzker, A. Del Campo, M. Plenio, G. Morigi and G. De Chiara Quantum Engineering of States and Devices: Theory.
On the dynamics of the Fermi-Bose model Magnus Ögren Nano-Science Center, Copenhagen University. DTU-Mathematics, Technical University of Denmark. In collaboration.
Imre Varga Elméleti Fizika Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem, H-1111 Budapest, Magyarország Imre Varga Departament de Física Teòrica.
1 Physics of GRB Prompt emission Asaf Pe’er University of Amsterdam September 2005.
Dynamics of Anderson localization
Multifractality of random wavefunctions: recent progress
Long Range Spatial Correlations in One- Dimensional Anderson Models Greg M. Petersen Nancy Sandler Ohio University Department of Physics and Astronomy.
Pavel Stránský Complexity and multidiscipline: new approaches to health 18 April 2012 I NTERPLAY BETWEEN REGULARITY AND CHAOS IN SIMPLE PHYSICAL SYSTEMS.
Strong coupling between a metallic nanoparticle and a single molecule Andi Trügler and Ulrich Hohenester Institut für Physik, Univ. Graz
Two particle states in a finite volume and the multi-channel S- matrix elements Chuan Liu in collaboration with S. He, X. Feng Institute of Theoretical.
Generalized Dynamical Mean - Field Theory for Strongly Correlated Systems E.Z.Kuchinskii 1, I.A. Nekrasov 1, M.V.Sadovskii 1,2 1 Institute for Electrophysics.
Wigner-Mott scaling of transport near the two-dimensional metal-insulator transition Milos Radonjic, D. Tanaskovic, V. Dobrosavljevic, K. Haule, G. Kotliar.
07/11/11SCCS 2008 Sergey Kravchenko in collaboration with: AMAZING PROPERTIES OF STRONGLY CORRELATED ELECTRONS IN TWO DIMENSIONS A. Punnoose M. P. Sarachik.
Dynamical Fluctuations & Entropy Production Principles Karel Netočný Institute of Physics AS CR Seminar, 6 March 2007.
COSPAR 2004, Paris D July 21, 2004 THE HELIOSPHERIC DIFFUSION TENSOR John W. Bieber University of Delaware, Bartol Research Institute, Newark.
1/3/2016SCCS 2008 Sergey Kravchenko in collaboration with: Interactions and disorder in two-dimensional semiconductors A. Punnoose M. P. Sarachik A. A.
Introduction to Statistical Thermodynamics of Soft and Biological Matter Lecture 2 Statistical thermodynamics II Free energy of small systems. Boltzmann.
V.E.Kravtsov ICTP, Trieste and Landau Institute Collaboration: Ivan Khaymovich, Aaalto Emilio Cuevas, Murcia.
Hidden topological order in one-dimensional Bose Insulators Ehud Altman Department of Condensed Matter Physics The Weizmann Institute of Science With:
Network Science K. Borner A.Vespignani S. Wasserman.
“Granular metals and superconductors” M. V. Feigel’man (L.D.Landau Institute, Moscow) ICTS Condensed matter theory school, Mahabaleshwar, India, Dec.2009.
Instability of optical speckle patterns in cold atomic gases ? S.E. Skipetrov CNRS/Grenoble (Part of this.
Introduction to Chalker- Coddington Network Model Jun Ho Son.
Functional Integration in many-body systems: application to ultracold gases Klaus Ziegler, Institut für Physik, Universität Augsburg in collaboration with.
Thermal and electrical quantum Hall effects in ferromagnet — topological insulator — ferromagnet junction V. Kagalovsky 1 and A. L. Chudnovskiy 2 1 Shamoon.
HIRG 重离子反应组 Heavy Ion Reaction Group GDR as a Probe of Alpha Cluster in Light Nuclei Wan-Bing He ( 何万兵 ) SINAP-CUSTIPEN Collaborators : Yu-Gang.
DISORDER AND INTERACTION: GROUND STATE PROPERTIES of the DISORDERED HUBBARD MODEL In collaboration with : Prof. Michele Fabrizio and Dr. Federico Becca.
Probing Anderson Localization via Fidelity via Fidelity Probing Anderson Localization via Fidelity via Fidelity Joshua D. Bodyfelt in collaboration with.
Probing Anderson Localization in Absorptive Systems with Fidelity Department of Physics Complex Quantum Dynamics and Mesoscopic Physics Group Joshua D.
Tunable excitons in gated graphene systems
Four wave mixing in submicron waveguides
Finding Stationary Solutions with Constraints using Damped Dynamical Systems P. Sandin, A. Lockby, M. Ögren and M. Gulliksson Örebro University School.
Quantum Phase Transition of Light: A Renormalization Group Study
Power-Law Correlated Disorder in Graphene and Square Nanoribbons
ultracold atomic gases
Institut für Theoretische Physik Eberhard-Karls-Universität Tübingen
Anderson localization of weakly interacting bosons
Ivan Melo, Mikuláš Gintner Žilina in collaboration with
Interplay of disorder and interactions
Interplay between disorder and interactions
N. Vladimirova, G. Falkovich, S. Derevyanko
Ehud Altman Anatoli Polkovnikov Bertrand Halperin Mikhail Lukin
One-Dimensional Bose Gases with N-Body Attractive Interactions
Dynamical mean field theory: In practice
Status of FEL Physics Research Worldwide  Claudio Pellegrini, UCLA April 23, 2002 Review of Basic FEL physical properties and definition of important.
宇宙磁场的起源 郭宗宽 中山大学宇宙学研讨班
Revisiting Entropy Production Principles
Multifractality in delay times statistics
Cluster Variation Method for Correlation Function of Probabilistic Model with Loopy Graphical Structure Kazuyuki Tanaka Graduate School of Information.
Cosmological Scaling Solutions
Spreading of wave packets in one dimensional disordered chains
Haris Skokos Max Planck Institute for the Physics of Complex Systems
Presentation transcript:

Single Parameter Scaling Theories for Stationary Solutions in Nonlinear Disordered Media Single Parameter Scaling Theories for Stationary Solutions in Nonlinear Disordered Media Joshua D. Bodyfelt in collaboration with Tsampikos Kottos & Boris Shapiro Max-Planck-Institute für Physik komplexer Systeme Condensed Matter Division in cooperation with Wesleyan University, CQDMP Group Technion – Israel Institute of Technology supported by U.S. - Israel Binational Science Foundation (BSF) DFG FOR760 - “Scattering Systems with Complex Dynamics” Albert-Ludwigs-Universität Freiburg Quantum Optics and Statistics Physikalisches Institut November 18 th, 2010

Motivations from the Laboratory From Organic Chemistry......to Atomics. Lahini, et al. Phys. Rev. Lett. 100, (2008) A. Aspect, et al., Nature 453, 891 (2008)...to Optics... Eilbeck, et al. Phys. Rev. B 30, 4703 (1984) Feddersen, Phys. Lett. A 154, 391 (1991)

A Brief Synopsis A Brief Synopsis A. Linear Disordered Systems 1. Characterizing Anderson Localization 2. Single Parameter Scaling Theory (SPST) 3. A Quasi-1D Model of Disorder 4. Universality of SPST B. Nonlinear Disordered Systems 1. Nonlinear Parametric Evolution 2. Linear SPST in Nonlinear Systems – Failure 3. Correcting the Nonlinear Scalings 4. Nonlinear SPST Theory – Success C. Conclusions and Outlook

Characterizing Anderson Localization – The Problem Characterizing Anderson Localization – The Problem ● IDEALLY build a Green's function: ● Given: ● with solutions: Correlations of solutions depend on parameter V/W: and apply Kubo-Greenwood-Peierls formula V/W < 1 (0.3) – 'Metallic Phase': V/W > 1 (3.0) – 'Insulator Phase':

Characterizing Anderson Localization – A Solution Characterizing Anderson Localization – A Solution Thouless Conductance:.

Single Parameter Scaling Theory (SPST) Single Parameter Scaling Theory (SPST) The “Gang of Four” Abrahams, Anderson, Licciardello, & Ramakrishnan, Phys. Rev. Lett. 42, 673 (1979) For block of length Energy Levels: Spectral Width: In the continuous limit γ 1 : g IS the single parameter! N

A Quasi-1D Model of Disorder – BRM Casati, Molinari, & Izrailev, Phys. Rev. Lett. 64, 1851 (1990) In Thouless-Anderson: What about β (g) ? What about β (g) ?

A Quasi-1D Model of Disorder – BRM A Quasi-1D Model of Disorder – BRM “Ergodic” Two Limiting Cases “Thermodynamic” Inverse Participation

Universality of SPST Universality of SPST Include: 1) BRM Thouless Scaling 2) Anderson IPR Scaling 3) Delay Time Scalings ALL LINEAR.

PST – BRM Linear Case SPST – BRM Linear Case Localized Extended Ergodic:, Thermodynamic: Izrailev, Phys. Rep. 196, 299 (1990)

A Brief Mention of Nonlinear Numerical Methods “Continuation” Method ➢ Take the linear eigensolutions ➢ DNLS-like Equation, add small nonlinearity ➢ Solutions found from minimizing the function using the linear eigensolutions as an initial guess. ➢ Repeat for next step in nonlinearity, using new solution as initial guess.

Parametric Nonlinear Spectra

Parametric Wavefunction Evolution Lahini, et al. Phys. Rev. Lett. 100, (2008) Bodyfelt, Kottos, & Shapiro, Phys. Rev. Lett., submitted (2010)

The Failure of Linear SPST in Nonlinear Systems Bodyfelt, Kottos, & Shapiro, Phys. Rev. Lett., submitted (2010)

Setting NonlinearReferences - Localization Length Setting Nonlinear References - Localization Length Needs Bodyfelt, Kottos, & Shapiro, Phys. Rev. Lett., submitted (2010) b=4

Setting Nonlinear References - Localization Length ● Small Nonlinear Limit ● Large Nonlinear Limit

SettingNonlinear References - Localization Length Setting Nonlinear References - Localization Length Bodyfelt, Kottos, & Shapiro, Phys. Rev. Lett., submitted (2010)

Setting Nonlinear References – Full Ergodic ● Linear Case Maximize entropy : Under the constraint : Gaussian Distribution ● Nonlinear Case Minimize free energy :

Constructing the Nonlinear OPST Linear Nonlinear

One Parameter Scaling Theory: Nonlinear Case Bodyfelt, Kottos, & Shapiro, Phys. Rev. Lett., submitted (2010)

Conclusion Conclusion ➢ Nonlinear Scaling Theory Established for the Single Parameter ➢ Future Possibilities ● Nonlinear Scaling applied to Thouless Conductance ● Nonlinearity Effect on 3D Metal-Insulator Transition ● Field Theories to Incorporate Nonlinearity?

C H R O N C H N C O C H R C O N C H R H C O N C H R H C H R O N C H