Plateforme de Calcul pour les Sciences du Vivant Lydia Maigne GATE/G4 meeting collaboration - 12/09/07 - Hebden Bridge 1 Electron.

Slides:



Advertisements
Similar presentations
Slide 1 Insert your own content. Slide 2 Insert your own content.
Advertisements

1 Copyright © 2013 Elsevier Inc. All rights reserved. Chapter 28.
0 - 0.
Addition Facts
Maria Grazia Pia, INFN Genova Test & Analysis Project Maria Grazia Pia, INFN Genova on behalf of the T&A team
1 Heinrich Müller Maschinenfabrik GmbH HMP Umformtechnik GmbH 1 Heinrich Müller Maschinenfabrik GmbH HMP Umformtechnik GmbH Incremental forming Radial.
Geant 4 simulation of the DEPFET beam test Daniel Scheirich, Peter Kodyš, Zdeněk Doležal, Pavel Řezníček Faculty of Mathematics and Physics Charles University,
Radiation Levels in ALICE Andreas Morsch Meeting on ALICE Radiation Tolerance 30/8/2004.
Bharani Ravishankar, Benjamin Smarslok Advisors Dr. Raphael T. Haftka, Dr. Bhavani V. Sankar SEPARABLE SAMPLING OF THE LIMIT STATE FOR ACCURATE MONTE CARLO.
2. June 1 Verification of Monte Carlo Transport Codes FLUKA, MARS and SHIELD-A Vera Chetvertkova, E. Mustafin, I.Strasik (GSI,
Imperial College London 1 3. Beam extraction 3. Extraction of particle beams 3.1 The space charge limit and Child-Langmuirs law 3.2 External and internal.
MC simulation of test beam events Fabrizio Salvatore (RHUL)
Optimisation in proton scanning beams
Atom atom atom atom atom 1.True or false? Protons are in the nucleus.
Chapter 1 Chemistry and You
1 COMPARISON BETWEEN PLATO ISODOSE DISTRIBUTION OF A 192 IR SOURCE AND THOSE SIMULATED WITH GEANT4 TOOLKIT F. Foppiano 1, S. Agostinelli 1, S. Garelli.
Addition 1’s to 20.
Test B, 100 Subtraction Facts
Technische Universität München Beam Simulation at COMPASS Gentner Day Karl A. Bicker.
Giorgio Russo National Research Council, Institute of Bioimaging and Molecular Imaging (IBFM) Fondazione Istituto San Raffaele G. Giglio di Cefalù Istituto.
1 Unit 1 Kinematics Chapter 1 Day
New results of radiation environment investigation by Liulin-5 experiment in the human phantom aboard the International Space Station.
Short-range, high-LET recoil tracks in CR-39 plastic nuclear track detector E. R. Benton 1, C. E. Johnson 1, J. DeWitt 1, N. Yasuda 2, and E. V. Benton.
GEant4 Microdosimetry Analysis Tool - GEMAT Fan Lei, Peter Truscott & Petteri Nieminen SPENVIS/Geant4 Workshop, Leuven, Belgium 05 October 2005.
Derivation of initial electron beam energy spectrum Janusz Harasimowicz Establishment for Nuclear Equipment
Advanced Neutron Spectrometer (ANS) Geant4 Simulations
Stefan Roesler SC-RP/CERN on behalf of the CERN-SLAC RP Collaboration
The Vin č a Institute of Nuclear Sciences, Belgrade, Serbia * Universita degli studi di Bologna, DIENCA, Italia Radovan D. Ili}, Milan Pe{i}, Radojko Pavlovi}
GEANT4 simulation of an ocular proton beam & benchmark against MC codes D. R. Shipley, H. Palmans, C. Baker, A. Kacperek Monte Carlo 2005 Topical Meeting.
Plateforme de Calcul pour les Sciences du Vivant Embrace WP3 meeting Vincent Breton Chargé de Recherches au CNRS.
GAMOS tutorial Histogram and Scorers Exercises
Summary of Medical Physics Parallel Sessions and Discussions Joseph Perl Stanford Linear Accelerator Center Geant4 Workshop Hebden Bridge, UK 19 September.
Liquid Xenon Gamma Screening Luiz de Viveiros Brown University.
Electromagnetic Physics I Joseph Perl SLAC National Accelerator Laboratory (strongly based on Michel Maire's slides) Geant4 v9.3.p01 Standard EM package.
MONTE CARLO RADIATION DOSE SIMULATIONS AND DOSIMETRY COMPARISON OF THE MODEL 6711 AND I BRACHYTHERAPY SOURCES Mark J. Rivard Department of Radiation.
1 M.G. Pia et al. The application of GEANT4 simulation code for brachytherapy treatment Maria Grazia Pia INFN Genova, Italy and CERN/IT
RF background, analysis of MTA data & implications for MICE Rikard Sandström, Geneva University MICE Collaboration Meeting – Analysis session, October.
Geant4 simulation of the attenuation properties of plastic shield for  - radionuclides employed in internal radiotherapy Domenico Lizio 1, Ernesto Amato.
Geant4: Electromagnetic Processes 2 V.Ivanchenko, BINP & CERN
Sergey Ananko Saint-Petersburg State University Department of Physics
Gamma calorimeter for R3B: first simulation results INDEX ● The calGamma Geant4 simulation ( a short introduction ) ● Crystal and geometry selection: –
R 3 B Gamma Calorimeter Agenda. ● Introduction ● Short presentation on the first ● Task definition for R&D period ( )
GRAS Validation and GEANT4 Electromagnetic Physics Parameters R. Lindberg, G. Santin; Space Environment and Effects Section, ESTEC.
Attenuation by absorption and scattering
Monte Carlo simulation of the imaging properties of a scintillator- coated X-ray pixel detector M. Hjelm * B. Norlin H-E. Nilsson C. Fröjdh X. Badel Department.
Automated Electron Step Size Optimization in EGS5 Scott Wilderman Department of Nuclear Engineering and Radiological Sciences, University of Michigan.
DDEP 2012 | C. Bisch – Study of beta shape spectra 1 Study of the shape of  spectra Development of a Si spectrometer for measurement of  spectra 
Geant4 review from the aspect of a GATE developer and user Nicolas Karakatsanis.
Evaluation of absorbed fractions for beta- gamma radionuclides in ellipsoidal volumes of soft tissue through Geant4 Ernesto Amato 1, Domenico Lizio 2 and.
LABORATOIRE de PHYSIQUE CORPUSCULAIRE Use of Geant4 for the interpretation of irradiation at low dose on melanoma human cells G.Montarou (LPC Clermont)
Monte Carlo methods in ADS experiments Study for state exam 2008 Mitja Majerle “Phasotron” and “Energy Plus Transmutation” setups (schematic drawings)
March 28-April, Particle Acceleratior Conference - New York, U.S.A. Comparison of back-scattering properties of electron emission materials Abstract.
Transmission and Reflection of Electrons using GEANT3 Angus Comrie (University of Cape Town, SA-CERN) Supervisor: Karel Safarik Kinetic Energies of 100keV.
Validation of EM Part of Geant4
1 Neutron Effective Dose calculation behind Concrete Shielding of Charge Particle Accelerators with Energy up to 100 MeV V. E Aleinikov, L. G. Beskrovnaja,
P. Rodrigues, A. Trindade, L.Peralta, J. Varela GEANT4 Medical Applications at LIP GEANT4 Workshop, September – 4 October LIP – Lisbon.
Numerical Model of an Internal Pellet Target O. Bezshyyko *, K. Bezshyyko *, A. Dolinskii †,I. Kadenko *, R. Yermolenko *, V. Ziemann ¶ * Nuclear Physics.
Alex Howard PH-SFT LCG-PV 10 th May 2006 Neutron Benchmark for Geant4 using TARC – initial status 1)TARC – experimental set-up and aims 2)Geant4 Simulation.
Albert Riego, Guillem Cortes, Francisco Calviño July 22 th, 2015 Universitat Politecnica de Catalunya, Barcelona (Spain) Third BRIKEN WORKSHOP – IFIC (Valencia,
Validation of GEANT4 versus EGSnrc Yann PERROT LPC, CNRS/IN2P3
1 Transmission Coefficients and Residual Energies of Electrons: PENELOPE Results and Empirical Formulas Tatsuo Tabata and Vadim Moskvin * Osaka Prefecture.
A Study of Reverse MC and Space Charge Effect Simulation with Geant4
Heating and radiological
INTERCOMPARISON P3. Dose distribution of a proton beam
International Workshop on radiosensitization
variance reduction techniques to improve efficiency of calculation B
CEA – Saclay, DRT/LNHB/LMD, Gif-sur-Yvette, France
Arghya Chattaraj, T. Palani Selvam, D. Datta
The Hadrontherapy Geant4 advanced example
P. Rodrigues, A. Trindade, L.Peralta, J. Varela
Presentation transcript:

Plateforme de Calcul pour les Sciences du Vivant Lydia Maigne GATE/G4 meeting collaboration - 12/09/07 - Hebden Bridge 1 Electron Dose point kernels calculations in water using GATE/G4.8 GATE/G4 collaboration meeting, Lydia Maigne (LPC, Clermont-Ferrand), Credits: Cheick Thiam (LPC, Clermont-Ferrand), Nicolas Chouin, Ludovic Ferrer (Inserm, Nantes), Michel Maire (G4

Plateforme de Calcul pour les Sciences du Vivant Lydia Maigne GATE/G4 meeting collaboration - 12/09/07 - Hebden Bridge 2 DPK calculations methodology drr Simulations characteristics: -Isotropic point source -Monoenergetic emission, 5M e- generated -Scoring of the dose in a spherical water phantom of 400 mm in diameter containing 22 spherical shells each of thickness of 0.05 rE -Cut of 2 kev on e- -Standard EM package Formalism to calculate the dose (Berger and TG43): fraction of emitted energy that is deposited in a spherical shell of scaled radius r/rE to r/rE + d(r/rE). With: r being the radial distance to the middle of the spherical shells, rE the nominal CSDA range the density of the medium, D(r,E) the dose per incident particle at distance r.

Plateforme de Calcul pour les Sciences du Vivant Lydia Maigne GATE/G4 meeting collaboration - 12/09/07 - Hebden Bridge 3 Comparisons G4 versions and other Monte Carlo 4 MeV 1 MeV

Plateforme de Calcul pour les Sciences du Vivant Lydia Maigne GATE/G4 meeting collaboration - 12/09/07 - Hebden Bridge 4 Comparisons: Cuts, detector volumes, EM packages 4 MeV Large volumeSpherical shells 4 MeV Problems but where do they come from?? By considering a large volume of water: Cut values have a non negligeable influence By considering spherical shells: Changes on cut values have no influence Results obtained with a cut value of 2 keV ( mm) in a large volume of water give comparable results to spherical shells.

Plateforme de Calcul pour les Sciences du Vivant Lydia Maigne GATE/G4 meeting collaboration - 12/09/07 - Hebden Bridge 5 Solutions Important modifications to simulate the dose deposited: –No more spherical shells –Use of a large sphere in water Z Y X dr r r Modifications in the code of GATE: To fix the maximal step length on electron transport, StepMax To obtain an homogeneous distribution of the dose deposited along the step

Plateforme de Calcul pour les Sciences du Vivant Lydia Maigne GATE/G4 meeting collaboration - 12/09/07 - Hebden Bridge 6 Control the step length « StepMax » GEANT4 class to manage the step « G4Step.cc » In GATE: Addition of the class « GateStepMax » to call « GateSteppingAction » and « G4Step » classes: Consequence in GATE macros, add the following command line: # StepMax Control !!! /gate/StepMax/stepMax 7 µm Consequence on the dose deposited by electrons: No influence, results stay the same So, what to do?.....

Plateforme de Calcul pour les Sciences du Vivant Lydia Maigne GATE/G4 meeting collaboration - 12/09/07 - Hebden Bridge 7 Control the energy deposited along the step Modification of the « GateSteppingAction.cc » class: GEANT4: By default, energy is deposited at the end of the step: "Post-step point" -Random distribution of energy deposited along the step -Continue energy loss along the trajectory - Enable to fit well the dose deposited inside a volume Energy deposited

Plateforme de Calcul pour les Sciences du Vivant Lydia Maigne GATE/G4 meeting collaboration - 12/09/07 - Hebden Bridge 8 Results: 100 keV 100 keV, standard

Plateforme de Calcul pour les Sciences du Vivant Lydia Maigne GATE/G4 meeting collaboration - 12/09/07 - Hebden Bridge 9 Results: 3 MeV 3 MeV, standard

Plateforme de Calcul pour les Sciences du Vivant Lydia Maigne GATE/G4 meeting collaboration - 12/09/07 - Hebden Bridge 10 Comparisons GATE versus other MC codes 50 keV, standard

Plateforme de Calcul pour les Sciences du Vivant Lydia Maigne GATE/G4 meeting collaboration - 12/09/07 - Hebden Bridge 11 Comparisons GATE versus other MC codes 100 keV, standard

Plateforme de Calcul pour les Sciences du Vivant Lydia Maigne GATE/G4 meeting collaboration - 12/09/07 - Hebden Bridge 12 Comparisons GATE versus other MC codes 1 MeV, standard

Plateforme de Calcul pour les Sciences du Vivant Lydia Maigne GATE/G4 meeting collaboration - 12/09/07 - Hebden Bridge 13 Comparisons GATE versus other MC codes 2 MeV, standard

Plateforme de Calcul pour les Sciences du Vivant Lydia Maigne GATE/G4 meeting collaboration - 12/09/07 - Hebden Bridge 14 Comparisons GATE versus other MC codes 3 MeV, standard

Plateforme de Calcul pour les Sciences du Vivant Lydia Maigne GATE/G4 meeting collaboration - 12/09/07 - Hebden Bridge 15 Comparisons GATE versus other MC codes 4 MeV, standard

Plateforme de Calcul pour les Sciences du Vivant Lydia Maigne GATE/G4 meeting collaboration - 12/09/07 - Hebden Bridge 16 Conclusions -Random deposition of the energy along the step is the the most important parameter to change in the simulation to obtain reliable results -Comparisons show: -Deviation less than 1% between GATE and Berger results for 50, 100 keV and 1 MeV -Deviation less than 0.5% with other Monte Carlo -GATE and G4 are now trusted and well validated for dose deposited by electrons especially for very high dose gradient on short distances.