Galaxy Evolution and WFMOS

Slides:



Advertisements
Similar presentations
Chronicling the Histories of Galaxies at Distances of 1 to 20 Mpc: Simulated Performance of 20-m, 30-m, 50-m, and 100-m Telescopes Knut Olsen, Brent Ellerbroek,
Advertisements

JWST Science 4-chart version follows. End of the dark ages: first light and reionization What are the first galaxies? When did reionization occur? –Once.
Hierarchical Clustering Leopoldo Infante Pontificia Universidad Católica de Chile Reunión Latinoamericana de Astronomía Córdoba, septiembre 2001.
Optimal Photometry of Faint Galaxies Kenneth M. Lanzetta Stony Brook University.
HI in galaxies at intermediate redshifts Jayaram N Chengalur NCRA/TIFR Philip Lah (ANU) Frank Briggs (ANU) Matthew Colless (AAO) Roberto De Propris (CTIO)
RESULTS AND ANALYSIS Mass determination Kauffmann et al. determined masses using SDSS spectra (Hdelta & D4000) Comparison with our determination: Relative.
Star-Formation in Close Pairs Selected from the Sloan Digital Sky Survey Overview The effect of galaxy interactions on star formation has been investigated.
Dark Matter and Galaxy Formation Section 4: Semi-Analytic Models of Galaxy Formation Joel R. Primack 2009, eprint arXiv: Presented by: Michael.
Star formation at high redshift (2 < z < 7) Methods for deriving star formation rates UV continuum = ionizing photons (dust obscuration?) Ly  = ionizing.
AGN and Quasar Clustering at z= : Results from the DEEP2 + AEGIS Surveys Alison Coil Hubble Fellow University of Arizona Chandra Science Workshop.
THE MODERATELY LARGE SCALE STRUCTURE OF QUASARS
Masami Ouchi (Space Telescope Science Institute) for the SXDS Collaboration Cosmic Web Made of 515 Galaxies at z=5.7 Kona 2005 Ouchi et al ApJ, 620,
AGN downsizing は階層的銀河形成論で 説明できるか? Motohiro Enoki Tomoaki Ishiyama (Tsukuba Univ.) Masakazu A. R. Kobayashi (Ehime Univ.) Masahiro Nagashima (Nagasaki Univ.)
Z > 6 Surveys Represent the Current Frontier Motivation: - census of earliest galaxies (z=6,  =0.95 Gyr) - contribution of SF to cosmic reionization -
NAOKI YASUDA, MAMORU DOI (UTOKYO), AND TOMOKI MOROKUMA (NAOJ) SN Survey with HSC.
Cosmology & Large Scale Structure Case, Matthew Colless, GSMT SWG, 4-5 Dec 2002 11 GSMT Science - Case Studies Large Scale Structure and Cosmology Matthew.
Stellar Populations Science Knut Olsen. The Star Formation Histories of Disk Galaxies Context – Hierarchical structure formation does an excellent job.
RADIO OBSERVATIONS IN VVDS FIELD : PAST - PRESENT - FUTURE P.Ciliegi(OABo), Marco Bondi (IRA) G. Zamorani(OABo), S. Bardelli (OABo) + VVDS-VLA collaboration.
Conference “Summary” Alice Shapley (Princeton). Overview Multitude of new observational, multi-wavelength results on massive galaxies from z~0 to z>5:
Clustering in the Sloan Digital Sky Survey Bob Nichol (ICG, Portsmouth) Many SDSS Colleagues.
Next generation redshift surveys with the ESO-VLT
The Extremely Red Objects in the CLASH Fields The Extremely Red Galaxies in CLASH Fields Xinwen Shu (CEA, Saclay and USTC) CLASH 2013 Team meeting – September.
Francisco Javier Castander Serentill Institut d’Estudis Espacials de Catalunya (IEEC) Institut de Ciències de l’Espai (ICE/CSIC) Barcelona Exploiting the.
MARK CORRELATIONS AND OPTIMAL WEIGHTS ( Cai, Bernstein & Sheth 2010 )
Surveying the Universe with SNAP Tim McKay University of Michigan Department of Physics Seattle AAS Meeting: 1/03 For the SNAP collaboration.
The coordinated growth of stars, haloes and large-scale structure since z=1 Michael Balogh Department of Physics and Astronomy University of Waterloo.
PHY306 1 Modern cosmology 3: The Growth of Structure Growth of structure in an expanding universe The Jeans length Dark matter Large scale structure simulations.
High-Redshift Galaxies in Cluster Fields Wei Zheng, Larry Bradley, and the CLASH high-z search group.
Naoyuki Tamura (University of Durham) The Universe at Redshifts from 1 to 2 for Early-Type Galaxies ~ Unveiling “Build-up Era” with FMOS ~
Modeling the dependence of galaxy clustering on stellar mass and SEDs Lan Wang Collaborators: Guinevere Kauffmann (MPA) Cheng Li (MPA/SHAO, USTC) Gabriella.
The European Extremely Large Telescope Studying the first galaxies at z>7 Ross McLure Institute for Astronomy, Edinburgh University.
Cosmos Survey PI Scoville HST 590 orbits I-band 2 deg. 2 !
Models & Observations galaxy clusters Gabriella De Lucia Max-Planck Institut für Astrophysik Ringberg - October 28, 2005.
High-Redshift Galaxies from HSC Deep Surveys Kazuhiro Shimasaku (University of Tokyo) 1. Galaxy Evolution 2. Dropout Galaxies and Lyman α Emitters 3. Observing.
Luminous Red Galaxies in the SDSS Daniel Eisenstein ( University of Arizona) with Blanton, Hogg, Nichol, Tegmark, Wake, Zehavi, Zheng, and the rest of.
Semi-analytical model of galaxy formation Xi Kang Purple Mountain Observatory, CAS.
FIRST LIGHT A selection of future facilities relevant to the formation and evolution of galaxies Wavelength Sensitivity Spatial resolution.
Deep Surveys for High-z Galaxies with Hyper Suprime-Cam M. Ouchi (OCIW), K. Shimasaku (U. Tokyo), H. Furusawa (NAOJ), & HSC Consortium ≲ ≳≲ ≳
The Formation and Evolution of Galaxies Michael Balogh University of Waterloo.
KASI Galaxy Evolution Journal Club A Massive Protocluster of Galaxies at a Redshift of z ~ P. L. Capak et al. 2011, Nature, in press (arXive: )
Study of Proto-clusters by Cosmological Simulation Tamon SUWA, Asao HABE (Hokkaido Univ.) Kohji YOSHIKAWA (Tokyo Univ.)
A self consistent model of galaxy formation across cosmic time Bruno Henriques Simon White, Peter Thomas Raul Angulo, Qi Guo, Gerard Lemson, Volker Springel.
Reionization of the Universe MinGyu Kim
Stellar Populations Science Knut Olsen. The Star Formation Histories of Disk Galaxies Context – Hierarchical structure formation does an excellent job.
Galaxy Group Studies in Future Jubee Sohn.
Outline Part II. Structure Formation: Dark Matter
Gas Inflow and Cosmic Star Formation Efficiency in Galaxies at z>3
Extragalactic Archaeology
Observing the formation and evolution of massive galaxies
The Optical Sky Background
The History of the Baryon Budget Yann Rasera Supervisor: Romain Teyssier and Jean-Pierre Chièze Horizon Project Cosmological simulations Analytical model.
Subaru UM 2010 on Mitaka First Unbiased Estimates of the Metallicity and Star-Formation Activity of Lyman Alpha Emitters Kimihiko Nakajima(U.
Nobunari Kashikawa (National Astronomical Observatory of Japan)
in a Large-Scale Structure at z=3.1
Jessica L. Rosenberg George Mason University
Possibility of UV observation in Antarctica
What is EVLA? Build on existing infrastructure, replace all electronics (correlator, Rx, IF, M/C) => multiply ten-fold the VLA’s observational capabilities.
Extra-galactic blank field surveys with CCAT
Yuka Katsuno Uchimoto Institute of Astronomy, University of Tokyo
Tohru Nagao Observational Study on
Photometric Redshift Training Sets
The Stellar Population of Metal−Poor Galaxies at z~1
High-z (z > 3) QSOs studied with Subaru/HSC
Probing the IMF Star Formation in Massive Clusters.
Black Holes in the Deepest Extragalactic X-ray Surveys
High Resolution Spectroscopy of the IGM: How High
Outline Part II. Structure Formation: Dark Matter
Ages, Metallicities and Abundances of Dwarf Early-Type Galaxies in the Coma Cluster by Ana Matković (STScI) Rafael Guzmán (U. of Florida) Patricia Sánchez-Blázquez (U.
Probing Reionization & Galaxy Evolution by High-z Lyα Emitters
Brightest ~500,000 Galaxies in the Northern Hemisphere (1977; RA & DEC only) 2-D “lacework” pattern.
Presentation transcript:

Galaxy Evolution and WFMOS History of Galaxies Present-day Universe: SDSS WFMOS Survey of z>1 Universe K. Shimasaku (University of Tokyo)

Star Formation Rate Density [Msun/yr/Mpc3] History of Galaxies:Current Understanding redshift peak monotonic decrease Star Formation Rate Density [Msun/yr/Mpc3] first galaxies (z~30?) galaxy morphology galaxy clusters reionization (z~10?) birth of Earth now Age of Uniserve (x10 yr) 8

z=7.0 For high-z universes, our knowledge is limited to average (and limited) properties of bright galaxies.

In the present-day universe, galaxy properties depend strongly on mass and environment. Specific SFR vs Stellar Mass for z=0 Galaxies spiral Specific SFR [/Gyr] dwarf E, S0 Stellar Mass [Msun] Brinchmann et al. 2004 (SDSS)

Theory also predicts that galaxy evolution depends on mass and environment. ΛCDM model = Λ+cold dark matter + baryon + primordial fluctuations primordial fluctuations hierarchical growth to more massive galaxies complex baryon processes depending on mass, environment, and time gas cooling and star formation feedback to gas SN heating → effective in less massive galaxies AGN heating → effective in massive galaxies environmental effect (galaxies, ICM, UV background…) galaxy feedback gas star cooling environment ・these processes have not been solved ・may be missing some important processes

Sloan Digital Sky Survey: A definitive data set for the present-day universe 2.5m survey telescope mosaic CCD camera multifiber spectrograph - very wide field : πsteradian (1x10^8 Mpc for z<0.1) - rich photometry : 5 bands (ugriz) - huge number of spectra : 10^6 galaxies, 10^5 QSOs 3

Next Step: SDSS-like Survey for z>1 Universe Major Science Goal: Derive fundamental properties like age, SFR, metallicity, dust extinction, morphology, internal structure, QSO/AGN, SMBH as functions of redshift, environment, and galaxy mass At z>1 spectroscopic data are much poorer than imaging data (cf. CfA vs SDSS for z~0 universe). Photometric redshift cannot be a substitute for spectroscopy. WFMOS can contribute to the above science, if excellent imaging data pre-exist.

What can WFMOS do? WFMOS performance comoving length - wide FoV: 1.77 deg2 - high multiplicity: 4500obj/FoV - high spec resolution: R=3000-40000 - high sensitivity around 1um For a given observing time, WFMOS can - observe much more galaxies - observe with much higher S/N WFMOS is thus suitable for - statistical studies - rare objects - clustering and environment - z=6-7 surveys (1um sensitivity) Key point: how to supply good targets to WFMOS comoving length for 1.5deg comoving volume for 1.77deg2

Large-scale structure covered by WFMOS z=1 D=90Mpc z=5 D=200Mpc VIRGO Consortium We should not underestimate cosmic variance. Even one WFMOS FoV is not wide enough.

WFMOS Deep Sky Survey (WFDSS) Area: ~40 deg2 (~4E+8 Mpc3/Δz=1) Targets: galaxies (incl. AGN) at 1<z<7.5 Number of spectra: ~1,000,000 spectra Number of nights: ~100 nights (2hr/targets) Imaging data for target selection: Hyper Suprime-Cam Deep Surveys (1) Deep Survey: 40deg2, r=27.6mag ugrizy + NB (+NIR) (2) Ultra Deep Survey: 3.5deg2, r=28.6mag

Number of Targets in WFDSS Continuum flux-limited samples (color or phot-z): z~1: 10^6 (i<24; M*+1.5) z~3: 3x10^5 (i<25; M=-20.5) z~4: 10^5 (i<25; M=-21.0) z~5: 10^4 (z<25; M=-21.4) z~6: 10^3 (z<25; M=-21.7) Lyman alpha emitters: 10^4 /Δz=0.1 (NB<26) 10 Coma-cluster ancestors per Δz=1 Rare objects: forming clusters (SSA22-like, z=5.7 cluster-like…) forming galaxies (cooling, pop-III) etc

Science Cases For all redshifts For z>6 spatial distribution → environment, dark-halo mass spectra → SFR, age, metallicity, AGN multiband imaging → stellar mass, (SFR, E(B-V), color) - mass- and environment-dependent galaxy evolution (for chemical evolution, see Nagao-san’s talk) - cluster formation, LSS formation - primordial galaxies (cooling, pop-III) (- number density of high-z galaxies) For z>6 - galaxy properties and reionization processes (Ouchi-san’s talk, Goto-san’s talk) redshift SFR, Mstar, age, Z, dust, AGN dark-halo mass environment

Importance of Spectroscopy 3D distribution - environment (pairs, groups, clusters, LSS, …) - cluster and group finding - spatial correlation function Physical quantities - age, SFR, metallicity, AGN, SMBH - accurate derivation of SED, Mstar, E(B-V), … Photometric redshifts (incl. LBG-like techniques) cannot be a substitute.

Existing Spec Surveys are not Large and Deep Enough DEEP2 3.5 deg2 30,000 spectra (0.7<z<1.5; 1.5E+7Mpc3) VVDS 2 deg2? 50,000 spectra at z>1? zCOSMOS-deep 1 deg2 10,000 spectra (1.5<z<3) Yamada Scale (T. Yamada 2008) Survey Area Comoving Volume (Mpc3/Δz=1) Main Targets 1 deg2 E+7 galaxy evolution 10 deg2 E+8 most luminous objects, clusters, LSS 100 deg2 E+9 QSOs, cosmic web 1000 deg2 E+10 dark energy survey

我々は 2 つの意味で幸運な時代にいる (1) ミクロな幸運 21世紀の現在は、銀河進化の謎に迫れる大型の望遠鏡や 装置が使える時代 - TMT, JWST, SPICA, ALMA, SKA, … - FMOS, Hyper Suprime-Cam, WFMOS, … (2) マクロな幸運 宇宙が100億歳余の現在は、銀河進化の全体像を観測し 得る時代 - 銀河進化の重要なできごとがちょうど終わった - もし宇宙初期に生きていたら、質量集積、形態、downsizing、 環境効果などの銀河進化のエッセンスは、すべて未来の できごととなり、観測できなかった - もしずっと未来に生きていたら、銀河進化のエッセンスは 遠過ぎて観測できなかった