Modeling of spectral fine-structure in GOME spectra Rutger van Deelen Otto Hasekamp Jochen Landgraf KNMI November 29, 2006.

Slides:



Advertisements
Similar presentations
Validation of SCIA’s reflectance and polarisation (Acarreta, de Graaf, Tilstra, Stammes, Krijger ) Envisat Validation Workshop, Frascati, 9-13 December.
Advertisements

Page1 SCIAMACHY Calibration Review – ESTEC – Sept 2002 SCIAMACHY Tangent Height Verification H.Bovensmann University of Bremen Institute of Remote.
QA flagging of clouds and atmospheric anomalies Fast UV simulation tool - FastRT Ola Engelsen Norwegian Institute for Air Research (NILU)
GOME-2 polarisation data and products L.G. Tilstra (1,2), I. Aben (1), P. Stammes (2) (1) SRON; (2) KNMI GSAG #42, EUMETSAT,
Algorithm improvements for Dutch OMI NO2 retrievals (towards v3.0)
Atmospheric Correction Algorithm for the GOCI Jae Hyun Ahn* Joo-Hyung Ryu* Young Jae Park* Yu-Hwan Ahn* Im Sang Oh** Korea Ocean Research & Development.
WP 5 : Clouds & Aerosols L.G. Tilstra and P. Stammes Royal Netherlands Meteorological Institute (KNMI) SCIAvisie Meeting, KNMI, De Bilt, Absorbing.
GOME-2 FM3 (Metop-A) Instrument Review, EUMETSAT, Darmstadt, June 2012 Slide: 1 Rűdiger Lang, Rose Munro, Antoine Lacan, Richard Dyer, Marcel Dobber, Christian.
 nm)  nm) PurposeSpatial Resolution (km) Ozone, SO 2, UV8 3251Ozone8 3403Aerosols, UV, and Volcanic Ash8 3883Aerosols, Clouds, UV and Volcanic.
Presentation on OMPS Nadir Mapper Wavelength Shift Adjustment for Earth-view Measurements.
Class 8: Radiometric Corrections
Institut für Umweltphysik/Fernerkundung Physik/Elektrotechnik Fachbereich 1 Retrieval of SCIAMACHY limb measurements: First Results A. Rozanov, V. Rozanov,
Xiong Liu Harvard-Smithsonian Center for Astrophysics December 20, 2004 Direct Tropospheric Ozone Retrieval from GOME.
Xiong Liu Harvard-Smithsonian Center for Astrophysics Kelly Chance, Christopher Sioris, Robert Spurr, Thomas Kurosu, Randall Martin,
Extracting Atmospheric and Surface Information from AVIRIS Spectra Vijay Natraj, Daniel Feldman, Xun Jiang, Jack Margolis and Yuk Yung California Institute.
A 21 F A 21 F Parameterization of Aerosol and Cirrus Cloud Effects on Reflected Sunlight Spectra Measured From Space: Application of the.
Page 1 1 of 20, EGU General Assembly, Apr 21, 2009 Vijay Natraj (Caltech), Hartmut Bösch (University of Leicester), Rob Spurr (RT Solutions), Yuk Yung.
ESTEC July 2000 Estimation of Aerosol Properties from CHRIS-PROBA Data Jeff Settle Environmental Systems Science Centre University of Reading.
The Physics of Atmospheric Gas Measurements The 2009 Noble Lectures University of Toronto Kelly Chance Harvard-Smithsonian Center for Astrophysics.
The Physics of Atmospheric Gas Measurements 2. Atmospheric physics as applied to data analysis algorithms Kelly Chance Harvard-Smithsonian Center for Astrophysics.
Development of GEMS Cloud Data Processing Algorithm Yong-Sang Choi 1, Bo-Ram Kim 1, Heeje Cho 2, Myong-Hwan Ahn 1 (Former COMS PI), and Jhoon Kim 3 (GEMS.
WP 3: Absorbing Aerosol Index (AAI) WP 10: Level-1 validation L.G. Tilstra 1, I. Aben 2, and P. Stammes 1 1 Royal Netherlands Meteorological Institute.
Quality of the official SCIAMACHY Absorbing Aerosol Index (AAI) level-2 product L.G. Tilstra and P. Stammes Royal Netherlands Meteorological Institute.
M. Van Roozendael, AMFIC Final Meeting, 23 Oct 2009, Beijing, China1 MAXDOAS measurements in Beijing M. Van Roozendael 1, K. Clémer 1, C. Fayt 1, C. Hermans.
Blue: Histogram of normalised deviation from “true” value; Red: Gaussian fit to histogram Presented at ESA Hyperspectral Workshop 2010, March 16-19, Frascati,
QA flagging of clouds and atmospheric anomalies Fast UV simulation tool - FastRT Ola Engelsen Norwegian Institute for Air Research (NILU)
EUMETSAT METEOROLOGICAL SATELLITE CONFERENCE 15/09/2013 – 20/09/2013, VIENNA EUMETSAT METEOROLOGICAL SATELLITE CONFERENCE 15/09/2013 – 20/09/2013, VIENNA.
ARCTAS BrO Measurements from the OMI and GOME-2 Satellite Instruments
Dr. North Larsen, Lockheed Martin IS&S Dr. Knut Stamnes, Stevens Institute Technology Use of Shadows to Retrieve Water Vapor in Hazy Atmospheres Dr. North.
SAO OMI formaldehyde, water vapor and glyoxal retrievals Gonzalo Gonzalez Abad Helen Wang Christopher Miller Kelly Chance Xiong Liu Thomas Kurosu OMI Science.
Retrieval of Ozone Profiles from GOME (and SCIAMACHY, and OMI, and GOME2 ) Roeland van Oss Ronald van der A and Johan de Haan, Robert Voors, Robert Spurr.
POLAR MULTI-SENSOR AEROSOL PROPERTIES OVER LAND Michael Grzegorski, Rosemary Munro, Gabriele Poli, Andriy Holdak and Ruediger Lang.
Combining Simultaneously Measured UV and IR Radiances from OMI and TES to Improve Tropospheric Ozone Profile Retrievals Dejian Fu 1, John Worden 1, Susan.
Trace gas algorithms for TEMPO G. Gonzalez Abad 1, X. Liu 1, C. Miller 1, H. Wang 1, C. Nowlan 2 and K. Chance 1 1 Harvard-Smithsonian Center for Astrophysics.
Rutherford Appleton Laboratory Remote Sensing Group Tropospheric ozone retrieval from uv/vis spectrometery RAL Space - Remote Sensing Group Richard Siddans,
Limb Retrieval at IFE/IUP in Bremen Working team: A. Rozanov, K.-U. Eichmann, C. v. Savigny, J. Kaiser Tests based on level 0 data Normalisation by –Solar.
SCIAMACHY TOA Reflectance Correction Effects on Aerosol Optical Depth Retrieval W. Di Nicolantonio, A. Cacciari, S. Scarpanti, G. Ballista, E. Morisi,
High resolution solar reference spectrum Robert Voors KNMI.
The Orbiting Carbon Observatory (OCO) Mission: Retrieval Characterisation and Error Analysis H. Bösch 1, B. Connor 2, B. Sen 1, G. C. Toon 1 1 Jet Propulsion.
Validation of OMPS-LP Radiances P. K. Bhartia, Leslie Moy, Zhong Chen, Steve Taylor NASA Goddard Space Flight Center Greenbelt, Maryland, USA.
Ozone PEATE 2/20/20161 OMPS LP Release 2 - Status Matt DeLand (for the PEATE team) SSAI 5 December 2013.
Journal #22 What is the purpose of a barometer? What is the most commonly used barometer?
Interannual Variability and Decadal Change of Solar Reflectance Spectra Zhonghai Jin Costy Loukachine Bruce Wielicki (NASA Langley research Center / SSAI,
Rutherford Appleton Laboratory Requirements Consolidation of the Near-Infrared Channel of the GMES-Sentinel-5 UVNS Instrument: Initial trade-off: Height-resolved.
Rutherford Appleton Laboratory Requirements Consolidation of the Near-Infrared Channel of the GMES-Sentinel-5 UVNS Instrument: FP, 25 April 2014, ESTEC.
1GRWG/GDWG Annual Meeting Tsukuba 29 Feb – 4 Mar 2016 Rűdiger Lang, Rose Munro, Gabriele Poli, Antoine Lacan, Christian Retscher, Michael Grzegorski, Alexander.
Other Trace Gases (a.k.a. HCHO, BrO, and OClO) Status & Outlook
DOAS workshop 2015, Brussels, July 2015
UV/VIS backscattered Sun light retrievals from space born platforms
Radiometric Preprocessing: Atmospheric Correction
Benjamin Scarino, David R
Carbon monoxide from shortwave infrared measurements of TROPOMI: Algorithm, Product and Plans Jochen Landgraf, Ilse Aben, Otto Hasekamp, Tobias Borsdorff,
V2.0 minus V2.5 RSAS Tangent Height Difference Orbit 3761
GEOGRAPHIC INFORMATION SYSTEMS & RS INTERVIEW QUESTIONS ANSWERS
Spectral Band Adjustment Factor (SBAF) Tool
Absolute calibration of sky radiances, colour indices and O4 DSCDs obtained from MAX-DOAS measurements T. Wagner1, S. Beirle1, S. Dörner1, M. Penning de.
The ROLO Lunar Calibration System Description and Current Status
Requirements Consolidation of the Near-Infrared Channel of the GMES-Sentinel-5 UVNS Instrument: FP, 25 April 2014, ESTEC Height-resolved aerosol R.Siddans.
Johan de Haan Pepijn Veefkind
Eumetsat conference 2004, Praha
UVN solar reference and model quality w.r.t. GOME-2/Metop
X. Liu1, C.E. Sioris1,2, K. 11/14/2018 Ozone Profile and Tropospheric Ozone Retrieval from SCIAMACHY Nadir Measurements:
GOME-2 hyper-spectral reflectance measurements: Inter-comparison with AVHRR and Seviri Rűdiger Lang, Rose Munro, Antoine Lacan, Christian Retscher, Gabriele.
The Sun: source of it all…
An Improved Retrieval of Tropospheric Nitrogen Dioxide from GOME
Atmospheric Heating Notes
Authors: B.Kerridge, R.Siddans, J.Reburn, B.Latter and V.Jay
Strawman Plan for Inter-Calibration of Solar Channels
MEASUREMENT OF TROPOSPHERIC COMPOSITION FROM SPACE IS DIFFICULT!
Cloud trends from GOME, SCIAMACHY and OMI
Presentation transcript:

Modeling of spectral fine-structure in GOME spectra Rutger van Deelen Otto Hasekamp Jochen Landgraf KNMI November 29, 2006

2 Measured GOME spectra solar irradiance spectrum Earth radiance spectrum

3 The GOME reflectivity spectrum

4 1. absorption bands spectral fine-structure

5 The GOME reflectivity spectrum 1. absorption bands 2. Ring effect 3. Doppler shift spectral fine-structure <1nm

6 Rotational Raman scattering Cabannes 96 % elastic Raman 4 % inelastic AIR (N 2, O 2 ) Raman

7 The Ring effect

8

9 Complication with reference solar spectra KuruczChance & Spurr

10 The origin of the shift v = 6.9 km s -1 v = 0 solar measurement earthshine measurement Earth Sun 0.01 nm

11 The shift between the solar and the earthshine spectrum pixnr pix Earth pix sun shift sun-Earth nm nm : : : : nm : : : : nm nm

12 The interpolation error

13 An improved method Common method Interpolate GOME solar spectrum onto Earth grid Take ratio Fit interpolation error correction and Ring effect correction (using reference solar spectrum)

14 An improved method Common method Interpolate GOME solar spectrum onto Earth grid Take ratio Fit interpolation error correction and Ring effect correction (using reference solar spectrum) Improved method Retrieve solar spectrum on fine grid from the GOME solar spectrum Use as input for modeling of Earth radiance spectra (for sampling on Earth wavelength grid and for Ring effect) Reconstructed solar spectrum on fine grid

15 The forward model: GOME solar spectrum 1 pixel Slit-averaging and sampling

16 The forward model: GOME solar spectrum 1 pixel All-in-one: Instrument response function Slit-averaging and sampling

17 The forward model: GOME earth spectrum 1 pixel Atmospheric radiative transfer, slit-averaging and sampling solar earthshine

18 The forward model: GOME earth spectrum 1 pixel All-in-one: system response function Atmospheric radiative transfer, slit-averaging and sampling solar earthshine

19 The forward model: 1 pixel

20 The forward model M << N

21 Retrieval of a solar spectrum on a fine grid from the GOME solar measurement The inverse of underdetermined problem: solution of minimum length (Menke, 1989) Forward model:

22 The retrieved solar spectrum is a smooth version of the true solar spectrum x ml null- space part

23 Data set: two orbits fit albedo clear sky land

24 Mean residual 121 clear sky above land 25

The undersampling problem of GOME Specifications of GOME: slit-fwhm=0.17 nm pixelwidth=0.12 nm 1.4 pixels/fwhm GOME pixel-width is too course: Reconstruction of incident solar spectrum on fine grid contains undersampling errors

26 Determining the undersampling error A Model GOME solar spectrum Retrieve solar spectrum on fine grid Input for GOME earthshine spectrum B Use true solar spectrum for GOME earthshine spectrum

27 Determining the undersampling error A Model GOME solar spectrum Retrieve solar spectrum on fine grid Input for GOME earthshine spectrum B Use true solar spectrum for GOME earthshine spectrum

28 Retrieval of a solar spectrum from the combination of a GOME earthshine and the GOME solar measurement The inverse for underdetermined problem: solution of minimum length (Menke, 1989) Forward model:

29 The inversion retrieval from combination of GOME earthshine and solar measurement x ml null- space part

30 The inversion (before) retrieval from GOME solar measurement x ml null- space part

31 Data set: two orbits Fit albedo

32 Mean residual clear sky above land

33 Mean residual (before) clear sky above land

34 Conclusion A higher degree of accuracy can be reached with our method No interpolation error No reference solar spectrum required Ring effect taken into account in a consistent way Two approaches: retrieve solar spectrum on fine grid from GOME solar spectrum: undersampling error retrieve from combination of GOME Earth and solar spectrum: ~ GOME noise 0.1%

Thank you for your attention

36 Residual over ocean

37 chkurnewkur GOME grid 1 cm -1 grid GOME Simulated solar spectrum with two different solar spectra chkurnewkur difference with GOME

38 Simulated Earth radiance spectrum for two different solar spectra

39 Interpolation error versus undersampling error

40 The retrieved solar spectrum is a smooth version of the true solar spectrum A = GK G = K T (KK T ) -1 x true = A x true + (I-A) x true x ml null-space part